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Abstract.  This paper investigates geometric and ontological aspects of shape
concepts underlying the semantics of nouns. Considering the German shape
nouns Ecke and Knick (corner and kink) we offer a geometric framework to
characterize substantial aspects of shape based on features of the object’s
boundary. Using the axiomatic method, we develop a geometric system, called
‘planar shape geometry’, enriching the basic inventory of ordering geometry by
shape curves. The geometric characterization is not sufficient to decide which
are the referents of the nouns Ecke and Knick among the entities involved in the
spatial constellation. Different tests using the German topological prepositions
in and an (in and at) are employed to bring forth this decision for the case of
Ecke. Since these tests do not give uniform evidence in favor of one solution,
we have to conclude that Ecke is flexible in selecting the referent and the
characterizations discussed reflect its meaning spectrum.

1 Introduction

1.1 Language and Space: The Role of Conceptual Representations

Human behavior is anchored in space. The processing of spatial information has a
central position for human cognition, since it subsumes information about spatial
properties of the entities in our environment, about spatial constellations in our sur-
roundings, and about the spatial properties and relations of our bodies with respect to
these surroundings. Spatial information is essential for the recognition of objects and
events by different sensory channels, i.e., in visual, haptic or auditory perception.
Locomotion and body movement are based on such information as well.
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Beyond perception and motor action, some higher cognitive capacities such as
memory, problem solving, and planning are based on spatial representations (cf.
Eilan, McCarthy & Brewer, 1993). Not only communication about space using natu-
ral language involves spatial language, but the systematic use of spatial terms in other
domains is a general feature of human communication. This suggests that abstract
spatial concepts play an important role in non-spatial domains (see Mandler, 1996;
Habel & Eschenbach, 1997).

The study of the relationship of language and space is a major field within cogni-
tive science (see, e.g., Bloom et al., 1996). A widely “consensually accepted frame-
work within which the relations between language and space have been considered”
has been established (Peterson et al., 1996, p. 553), namely that conceptual represen-
tations are an interface between language and spatial cognition. This holds despite
terminological variations and different demarcations between the modules involved
among distinct branches of the research on language and space (see Peterson et al.,
1996; Habel, 1990; Jackendoff, 1991; Landau & Jackendoff, 1993; Bierwisch &
Lang, 1989; Bierwisch, 1996).

The human cognitive system has two major ways of gaining information about
space: On the one hand, via perception and proprioception, and on the other hand, via
communication, especially using natural language. Conceptual representations are
fundamental for the relation between language and space since linguistic and spatial
conceptual representations constitute the linguistic-spatial interface. Conceptual re-
presentations encode meaning independent from any particular language. They “refer
not to the real world or to possible worlds, but rather to the world as we conceptualize
it” (Jackendoff, 1996, p. 5). Leaving aside details of the interface, studying spatial
terms leads to further insights about the deeper levels of conceptual representations
(see Jackendoff, 1996; Peterson et al., 1996, p. 555).

The units of the conceptual structure are called ‘concepts’ in the following. This
usage of ‘concept’ is a generalization of the standard usage of ‘concept’ in psycho-
logy, which focuses on the type called ‘nominal concept’ by Miller (1978). The re-
striction of the standard view is based on taking concepts as the means for
categorization (Smith, 1995, p. 3) and categorization as the placement of objects in
classes only. But since humans are able to categorize constellations of objects or ob-
ject parts and to recognize one object as being the same as an object encountered
before, it seems suitable to extend the notion of ‘concept’. According to Miller (1978)
we assume that the conceptual structure includes different types of concepts, e.g.
concepts for relations, properties and objects. In this sense, WRXFKLQJ, EHWZHHQQHVV or
FRUQHU are relational concepts, while VSKHUH, URXQG or DQJXODU are nominal concepts. In
contrast to this, our concepts of the moon or of Ray Jackendoff are object concepts.

Since conceptual structures are independent from individual languages, the corre-
spondence between lexemes and concepts is usually not of the one-to-one type.
Hence, it is important to distinguish between lexemes and their conceptual counter-
parts, even if they are referred to by the same string; we consider this by typographi-
cal differences, e.g. the lexeme corner vs. the concept FRUQHU.

The structure of representations relating language and space (see Fig. 1) reflects
the tasks to be performed in the analysis of spatial language and spatial cognition:
Lexemes (1) constitute the starting point of the analysis. Examples are spatial prepo-
sitions as in or behind, verbs as enter or nouns as corner. A systematic variation of



different combinations of lexemes determines their conceptual similarities and differ-
ences. In addition, the applicability and interpretability of simple and complex spatial
expressions can be tested with regard to different spatial situations.

A core idea of conceptual semantics is that the lexical entry of a spatial term speci-
fies a concept (2) that serves as a representation of some spatial constellation in the
external world. The geometric characterization (3) of spatial concepts (2) is the
mathematical description of empirical considerations on conceptual semantics. The
primary goal of the formal characterization is to determine some candidates for an
inventory of basic spatial concepts, which can be seen as building blocks for a system
of spatial concepts.

Lexicon (1)
lexemes →

Conceptual Structure (2)
FRQFHSWV ←

Spatial (Geometric) Representations (3)
geometric characterizations

Fig. 1. Types of entities used in the analysis of spatial terms of natural language

To develop a mathematical, e.g. topological or geometric, framework we employ the
axiomatic method.1 Instead of defining the basic concepts, an axiomatic system con-
stitutes a system of constraints that determines the properties of these concepts by
specifying their interrelations. Hence, axiomatic specifications of spatial properties
and relations provide exact characterizations. Different axiomatic systems—of one
given set of spatial relations—can be compared as to how restrictive they are.

In section 3 we develop a geometric framework, providing a formal basis to model
empirical linguistic findings. In general, the axiomatic systems we propose for groups
of spatial concepts are motivated by the analysis of natural language. The generality
of the theories developed using the axiomatic method is sometimes seen as a disad-
vantage, since they cannot be restricted to the one (intended) model the analysis is
based on. But in the context of the analysis of natural language expressions, this prop-
erty turns out to be an advantage again, since the variability of expressions with
respect to their domain of application is a well known feature of natural languages (cf.
Habel & Eschenbach, 1997).

1.2 Shape Concepts: Axes and Boundaries

The importance of shape information is emphasized in many areas of cognitive
science, especially with respect to visual perception and categorization.2 In spite of its
importance, there is a lack in lucidity what shape is. For instance, there is no explicit
characterization of shape, but only an informal agreement among scientists in the
field of visual perception. This agreement has been the basis of many approaches to
understand visual perception, which are described in Pinker’s (1984) overview of
central issues in visual cognition. Starting with the Marr-Nishihara theory (1978), the
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(see, Henkin et al., 1959, compare also the detailed discussion by Luce et al., 1990).
2 Rosch et al. (1976) point out that shape belongs to the key properties that structure ‘basic
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representation of shape is mainly based on spatial symmetry and object axes, which
play a central role both on the level of the whole object and that of the components.

In linguistic semantics the approach of Bierwisch and Lang (1989) on dimensional
adjectives, e.g. long or high, also emphasizes the role of axes for shape descriptions.
Object schemata, which serve as explanatory basis for the semantics of these terms
(see Lang, 1989), are conceptual representations of objects that specify their main
axes as well as the proportions between the axes; this information is matched against
a corresponding slot in the lexical entry of dimensional adjectives. The inter-
dependence of shape and axes as seen by Bierwisch and Lang is expressed in Bier-
wisch’s specification of shape of objects as “the proportional metrical characteristics
of objects and their parts with respect to their conceptually relevant axes or
dimensions (3-D models)” (Bierwisch, 1996, p. 47). 3

The other core notion for characterizing shape is ‘boundary’. Perception research
lays emphasis on the use of boundaries in decomposing objects into their parts, espe-
cially on describing rules for the detection of part boundaries, e.g. based on notions as
“concavities” of “concave regions” or the “minima rule” (see Marr & Nishihara,
1978; Biederman, 1987; Hoffman & Richards, 1984; Hoffman & Singh, 1997).
Biederman’s (1987) recognition-by-component (RBC) theory supplies an inventory of
36 geons (generalized cones) that are derived from properties of edges in a planar
image. These properties include curvature, collinearity, symmetry, parallelism and
cotermination. The resulting geons can be seen as building blocks for the specifi-
cation of objects by their components (cf. Biederman, 1995).

The RBC-theory and the idea of geons have been influential in linguistic and psy-
cholinguistic approaches to shape. For example, Landau and her colleagues assume
the same basic principles of characterizing ‘shape’ by the arrangement of object parts
as the object recognition theories described above. On this basis, Landau, Smith, and
Jones (1988) show that children and adults use similarity in shape much more than
similarity in size or texture in generalizing a novel count noun to new objects.

Characteristics of boundaries seem to play an important role also on the conceptual
level: Landau et al. (1992) report a series of experiments that emphasize the influence
of different types of boundaries (angular vs. curved edges) as cues for the acceptabil-
ity of shape transformations. These experiments show that, despite differences in the
global shape, objects with curved boundaries are more easily grouped together than
objects with angular boundaries. They suggest that angular boundaries in contrast to
curved boundaries are seen as evidence for rigidity.

In the present paper we focus on German lexemes—namely, Ecke (corner) and
Knick (kink)4—that involve properties of the boundary of an object. Starting with an
informal and general characterization of the spatial constellation underlying the uses

                                                          
3 “Dimension” as used by Bierwisch & Lang (1989) is widely identified with the concept of

axis, which is taken to be an internal bounded straight line. Hence, it is possible to compare
axes with respect to their length and thus to use axes for characterizing proportion.

4 The analysis reported was carried out with respect to the German lexemes. Note that their
English counterparts, which we use in the text for readability, differ in some respects. E.g.,
the English noun corner is used for parts of the mouth or the eye. In contrast, the German
noun Ecke cannot be used to refer to such parts. Instead Winkel (angle) is used. This observa-
tion suggests that corner is not as clearly restricted to objects with straight edges as Ecke is.



of these nouns, we present in section 3 a geometric framework that allows us to
specify the spatial aspects of their semantics. The spatial constellation specified is
neutral with respect to the question of what is the referent of a phrase like a corner of
the carpet. The referent might be just a point, a part of the boundary of the carpet, or a
part of the carpet itself. The details of these possibilities are given in section 4. Which
alternative is the most appropriate one will be discussed in section 5 in connection
with the more detailed linguistic analysis.

2 A First Glance at Corners and Kinks

The most obvious similarity between corners and kinks is that they possess vertices.
Still, the terms Ecke and Knick are mostly mutually exclusive.

2.1 Dimensionality

One important factor for differentiating FRUQHU and NLQN can be grasped by the idea of
‘dimensionality’. Since we are not aiming at a general account on dimensionality, we
will leave it at an informal characterization by giving examples of some mathematical
entities: points are zero-dimensional, line segments are linear or one-dimensional,
squares are planar or two-dimensional and cubes are three-dimensional. This exempli-
fication meets the interpretation of ‘dimensionality’ mostly used by linguists, such as
Bierwisch & Lang (1989) or Jackendoff (1991), who characterize dimensionality via
the number of orthogonal axes of the object. This traditional view has been replaced
in modern geometry and topology using recursive or inductive definition schemes that
explain the dimension of a space (or a subspace) by the dimension of its boundary.5

The differences in applicability of Ecke and Knick correspond to differences in the
dimensionality of the objects. Knick concerns a property of paths, sticks, or other
objects with a linear appearance.

(1) a. Der Weg hat einen Knick. (The path has a kink.)
b. Der Metallstab hat einen Knick. (The metal stick has a kink.)

(2) ?Der Metallstab hat eine Ecke. (The metal stick has a corner.)

In both cases in (1), it is impossible to replace the noun Knick by Ecke. A metal stick
that exhibits a vertex where two straight parts of the stick meet can be described using
(1.b). In contrast, (2) is not appropriate to describe the same situation. Since this is
independent from any contextual influence, there seems to be a semantic or concep-
tual conflict between Stab (stick) and Ecke, which prohibits their combination.
However, the contour itself is not sufficient to judge whether Knick or Ecke is the
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(1991, p. 32) also formulates the idea that “a boundary has one dimension fewer than what it
bounds”, he does not take the step of separating dimensionality and axes. From our point of
view, this separation is necessary to analyze boundary-shape concepts independently from
axes-shape concepts.



appropriate lexeme. To clarify this, we consider the example of a metal stick having
four kinks such that it bounds an area (Fig. 2). This situation can be described by
(3.a), (3.b) and by (3.c), but not using (3.d).

Fig. 2. Depiction of a metal stick with four (highlighted) kinks

(3) a. Der Metallstab hat vier Knicke. (The metal stick has four kinks.)
b. Die Fläche hat vier Ecken. (The area has four corners.)
c. Der Bilderrahmen hat vier Ecken. (The picture frame has four corners.)
d. ?Der Metallstab hat vier Ecken. (The metal stick has four corners.)

The differences between the linguistic descriptions in (3) reflect the different con-
ceptualizations of the entities in question. While the metal stick is considered as a
linear object in (3.a), the area in (3.b) and the picture frame in (3.c) are considered as
planar objects. Thus, the conceptualized dimension of an object in combination with
the shape properties determines the lexical decision. Since conceptualization, and
therefore mental representation, is involved, this difference can be seen as the differ-
ence between the concepts NLQN and FRUQHU.

.LQN and FRUQHU differ with respect to the conceptualized dimensionality of the
underlying objects: .LQN requires linear objects and FRUQHU requires at least planar
objects. Although a metal stick can induce a planar region as in Fig. 2, we explicitly
have to refer to the induced region and not to the object inducing the region, if we
want to refer to its corners, cf. (3.b) vs. (3.d).

Thus, although sticks are extended with respect to three dimensions, and paths are
at least planar, their linear conceptualizations are the basis for the constitution of a
NLQN-constellation as expressed in (1). Sticks and paths can be considered as linear
objects due to their prominent elongation axes. The characterizations of NLQN in section
4.2 reflects this observation.

The analysis of Ecke in the present paper focuses on planar examples like corner of
a window or corner of a carpet. Corners of three-dimensional objects—e.g. corners of
rooms, houses, cupboards, etc.—can be classified depending on whether the object is
conceptualized as planar or three-dimensional: the carpet in the corner of the room
needs only the consideration of the planar outline of the room, while the spider net in
the corner of the room can geometrically best be described based on three dimen-
sions. The restriction to the planar case is due to our observation that the basic points
we want to discuss with respect to the linguistic behavior of Ecke and the geometric
characterization of FRUQHU do not depend on the distinction between two- and three-
dimensional corners.

Dimensionality is an important aspect in investigating the ontological essence of
corners also in another way. In section 5 we discuss whether corners are vertex points,
parts of the boundary (i.e., linear), enclosed regions (i.e., planar), or parts of objects.
This line of investigation is in principle independent of the question whether the
objects they are corners of are conceptualized as linear or planar, since corners or
kinks need not be of the same dimension as the object they belong to.



2.2 Sharp Concepts in Flexible Use

In the remainder of this section we discuss geometric aspects of FRUQHU to motivate the
geometric analysis given in section 4. The general points hold for NLQN and other shape
nouns as well. The more detailed discussion of the lexeme corner in section 5 focuses
on aspects of its meaning that cannot be determined by geometric means.

Ideal corners, like the corners of a square or a triangle, exhibit a vertex at which
two straight parts of the object’s boundary meet. But the applicability of the lexeme
corner is vague with respect to at least three independent aspects.
• Vagueness in size: Corners can, depending on the context, reach far to the middle

of an object, or can be a very small part close to the vertex.
• Idealization of the vertex: Corners of material entities do not have to exhibit a

proper vertex at which two straight lines meet, e.g., corners of tables are not sharp-
edged in most cases (see Fig. 3.b).

• Idealization of the edges: The two edges meeting at the corner need not be straight
as line segments in geometry. The boundary of a material object can be wavy or
saw-toothed up to a certain degree, like the boundary of a stamp (see Fig. 3.c, d).

a. b. c. d. e.

Fig. 3. Four depictions of corners in contrast to smoothly meeting boundary parts

The review of these aspects of vagueness leads to the question, whether we have to
consider all geometric deviations that real-world referents of the count noun Ecke
show in the geometric characterization of FRUQHU. First of all, the vagueness in size
seems intrinsic to the concept of FRUQHU. The extent of corners cannot be given sharply
with respect to other parts of the object (this is indicated by the dashed lines in Fig.
3.a). Thus, the formal characterization of FRUQHU shall reflect this vagueness.

In contrast to this, the vagueness in regard to the sharpness of the vertex and the
straightness of the edges concerns the relation between corner-instances in the real
world and the concept FRUQHU or the lexeme Ecke, respectively. It regards the question
how well reality and geometry fit together. Akin to Miller & Johnson-Laird (1976),
we assume a definite conception for FRUQHU and flexible mappings of the real world to
the conceptual level that can make sense of the world as it is perceived, i.e., that are
able to handle the wide variety of instances of members of a category humans are
confronted with in perception.

We want to exemplify this flexibility with the case of the corners of stamps (see
Fig. 3.d). In order to assign corners to a stamp, it can be ignored that its border is saw-
toothed. The detailed geometric characteristics of the border of the stamp are not
relevant for its global shape. It is sufficient to conceive of this border as consisting of
straight line segments that are induced from the arrangement of the teeth of the stamp.
Thus, the attribution of having corners is based on the possibility to cognitively



induce straight edges from global characteristics of the object. Hence, the formal
characterization of FRUQHU developed in section 4 sticks to straight edges.

.LQN on the other hand does not need this requirement: If a kink is ascribed to a
metal stick as in (1.b), this does not demand that the adjacent parts of the vertex have
to be straight. Instead they may be curved. To reflect this distinction between NLQN and
FRUQHU we develop a framework that distinguishes straight from curved lines.

Another essential component of this concept is the vertex. Shapes that do not
exhibit a vertex (see Fig. 3.b) may be called runde Ecke (round corner or rounded
corner). They are constituted by straight line segments smoothly connected by an arc.
The line segments can be extended in a straight manner, obeying the Gestalt principle
of good continuation, such that they meet in a non-smooth way at a point outside the
object’s boundary, which can be called a ‘virtual vertex’ or ‘virtual corner point’.
This condition of ‘non-smooth meeting’ is essential, as Fig. 3.e exemplifies: Two arcs
that meet smoothly do not constitute a corner. Without the possibility to generate at
least a virtual vertex, we cannot ascribe the concept FRUQHU.

Summarizing the above considerations, we assume FRUQHU to be an idealized concept
for which straight lines and vertices play an important role. Therefore the formal
characterization we develop in section 4 is done in a geometric framework; by this,
we formulate the geometric requirements for the concept specifying the meaning of
the lexeme Ecke. Nevertheless it is not justified to say that Ecke is merely a geometric
notion that is part of a specialized mathematical register we learn at school (this might
be discussed for lexemes like parallel or angle). Ecke is a natural language term with
a common-sense denotation. But probably due to the fact that FRUQHU is based on
straight lines, vertices, and non-smooth meeting, it is mainly applied to artifacts. Their
regular shapes more easily induce straight edges that meet in a non-smooth, sharp
manner than the shapes of plants or animals. In addition to corner there are a variety
of natural language terms for object parts with vertices that are not restricted to
straight edges: apex, point, thorn, horn, tip, etc.

Giving FRUQHU a mainly geometric characterization leads to a view corresponding to
Pinkal’s (1985) general discussion of ‘vagueness and precision’: Using the lexeme
Ecke means to neglect some of the properties objects have and to look for properties
that are congruent with the geometry of FRUQHU. Geometric notions can be meaningfully
used in our scope of experience only if they are used flexibly, i.e. allowing some level
of imprecision.

3 The Framework of Planar Shape Geometry

This section presents a formal characterization of a geometric framework that is able
to specify the spatial constraints discussed so far. The goal is to identify the underly-
ing structures of the spatial concepts FRUQHU and NLQN. The geometric framework is
structured similarly to the system presented by Hilbert (1899), which is divided into
different groups of axioms. It is developed employing the axiomatic method: An
axiomatic system constitutes a system of constraints that determines the properties of
basic terms like ‘point’, ‘(shape) curve’ and ‘region’ by specifying their interrelations.
Since we aim at identifying the general constraints, we develop a description of



contours of planar objects that does not require concepts of differential geometry like
differentiability, tangents or real numbers. We thereby show that such concepts are
not necessary to describe essential shape features. Therefore, a description of shape
curves can forgo the use of coordinates or metrical information.6 The next section
presents proposals for characterizing FRUQHU and NLQN as a basis for further discussions.

The geometric structure introduces five types of entities and two primitive rela-
tions. The entities are points (denoted by P, Q, R, P’, P1, …), (straight) lines (denoted
by l, l’, l1, …), half-planes (denoted by H, H’, …), (shape) curves (denoted by c, c1,
…, s, s1, …, a, a1, …) and (shape) regions (denoted by Reg, Reg’, …). Segments and
arcs are simple shape curves characterized below. (We use the symbols s, s1, … and
a, a1, … for reference to simple curves.)7

The basic idea is that closed shape curves represent the contours of objects con-
ceptualized as planar, i.e., whose geometric representatives are shape regions. Open
shape curves are able to represent linear object conceptualizations as well as trajec-
tories of moving objects (Eisenkolb et al., 1998). Shape curves are constituted by line
segments and arcs. Half-planes are introduced in order to distinguish vertices and
smooth points of curves. This classification of points will be indispensable in order to
characterize the concepts FRUQHU and NLQN.

The primitive relations are the binary relation of incidence (symbolized by ι) and
the ternary relation of betweenness for points (symbolized by β). The relation of inci-
dence sets up the relation between points and the other entities and characterizes the
fact that a point lies on a line or curve, or in a half-plane or region. The relation of
betweenness relates three different points on one line.

3.1 Points and Straight Lines, Incidence and Betweenness

Axioms for Incidence of Points and Straight Lines
Four axioms relate points and straight lines using incidence. Axiom (I1) guarantees
that for every line there are at least two different points on it. Axiom (I2) states that
any two points lie on one common line. And (I3) says that two lines have at most one
point in common. The last axiom (I4) ensures that the underlying structure is at least
planar, i.e., not all points are incident with one line.

(I1) ∀l ∃P ∃Q [P ≠ Q ∧ P ι l ∧ Q ι l]
(I2) ∀P ∀Q ∃l [P ι l ∧ Q ι l]
(I3) ∀P ∀Q ∀l1 ∀l2 [P ι l1 ∧ Q ι l1 ∧ P ι l2 ∧ Q ι l2 ⇒ (P = Q ∨ l1 = l2)]

(I4) ∀l ∃P [¬(P ι l)]

                                                          
6 The geometric framework we present is closely related to the framework defined by Eschen-

bach & Kulik (1997), on which an investigation of spatial orderings in the plane and the
structures contributed by different frames of reference is based.

7 As can easily be shown, any of these entities can be represented as a set of points. Since
points, in turn, could be represented as sets of lines, half-planes, curves, or regions (cf.,
Laguna, 1922, Vieu, 1993), any type of entity we consider could be taken as the ontological
basis. Since there are several ways of how such a representation (or coding) can be done, we
do not assume any of such possibilities as preferable to the others.



Definition (Collinear)
The definitions of collinearity of three points will be useful in the following. For

matters of convenience, we define points to be collinear only if they are different.
Three (different) points P, Q and R are collinear, if they lie on one line.

FRO(P, Q, R) ⇔def P ≠ Q ∧ P ≠ R ∧ Q ≠ R ∧ ∃l [P ι l ∧ Q ι l ∧ R ι l]

Axioms for Betweenness of Points
The formula ‘β(P, Q, R)’ can generally be read as ‘Q is between P and R’. We pro-
vide seven axioms to specify this relation, six of them describe the order of points on
the line. According to axiom (β1), if Q is between P and R, then they are collinear,
and consequently distinct. Axiom (β2) expresses the symmetry of betweenness with
respect to the first and the third argument: If Q is between P and R, then Q is between
R and P. Axiom (β3) ensures that at most one of three points is between the other
two. Axiom (β4) states that for three collinear points at least one of them is between
the other two, therefore betweenness constitutes a total order. Axiom (β5) secures that
if Q is between P and R, and Q’ is collinear with them, then Q’ is on either side of Q.8

Axiom (β6) guarantees that lines are unlimited. Axiom (β7) (the axiom of Pasch)
specifies an additional constraint on the ordering in the plane according to Fig. 4: If a
straight line enters the interior of a triangle, then it also leaves it.
(β1) ∀P ∀Q ∀R [β(P, Q, R) ⇒ FRO(P, Q, R)]

(β2) ∀P ∀Q ∀R [β(P, Q, R) ⇒ β(R, Q, P)]

(β3) ∀P ∀Q ∀R [β(P, Q, R) ⇒ ¬β(Q, P, R)]

(β4) ∀P ∀Q ∀R [FRO(P, Q, R) ⇒ (β(P, Q, R) ∨ β(Q, P, R) ∨ β(P, R, Q))]

(β5) ∀P ∀Q ∀R ∀Q’[β(P, Q, R) ∧ FRO(Q, Q’, P) ⇒ (β(P, Q, Q’) ∨ β(Q’, Q, R))]

(β6) ∀P ∀Q [P ≠ Q ⇒ ∃R [β(P, Q, R)]]

(β7) ∀P1∀P2∀P3∀l [¬(P1 ι l) ∧ ¬(P2 ι l) ∧ ¬(P3 ι l) ∧ ∃Q [Q ι l ∧ β(P1, Q, P3)] ⇒
∃R [R ι l ∧ (β(P1, R, P2) ∨ β(P2, R, P3))]]

P1 P3

P2

R

Q

l

Fig. 4. Illustration of Pasch’s axiom (β7)

Pasch’s axiom guarantees that the structure we deal with is at most planar. Combined
with axiom (I4) this yields that the resulting structure is a plane.

                                                          
8 Huntington (1924) proves the complete independence of this system of five axioms when

restricted to one line only.



3.2 Half-Planes in Connection to Points and Straight Lines

The axioms for half-planes are formulated with reference to points and straight lines.
They make use of the notion of boundary point.

Definition (Boundary Point)
A point is called boundary point of a half-plane, if it is in the half-plane and there is a
point outside the half-plane such that all points between them are also outside the
half-plane: The boundary point is the last point before leaving the half-plane.

EGSW(H, P) ⇔def P ι H ∧ ∃R [¬(R ι H) ∧ ∀Q [β(P, Q, R) ⇒ ¬(Q ι H)]]

Axioms for Half-Planes
Half-planes are bordered by a straight line (H1) and have a point that is not a bound-
ary point (H2). If a point is in a half-plane but not a boundary point, then every point
R is in the half-plane, if and only if no point between them is a boundary point (H3).
For every straight line and every point there is a half-plane bordered by the line such
that the point is in the half-plane (H4). Finally, half-planes can be distinguished by the
points that lie in them (H5).
(H1) ∀H ∃l ∀P [P ι l ⇔ EGSW(H, P)]

(H2) ∀H ∃P [P ι H ∧ ¬EGSW(H, P)]

(H3) ∀H ∀P [P ι H ∧ ¬EGSW(H, P) ⇒
∀R [R ι H ⇔ ∀Q [β(P, Q, R) ⇒ ¬EGSW(H, Q)]]]

(H4) ∀l ∀P ∃H [∀Q [Q ι l ⇔ EGSW(H, Q)] ∧ P ι H]

(H5) ∀H ∀H’ [∀P [P ι H ⇔ P ι H’] ⇒ H = H’]
Since every half-plane is bordered by a line and border-lines are uniquely determined,
we use the notion EO(H) to refer to the border-line of half-plane H. As a consequence,
half-planes are uniquely determined by their border-line and an additional point on
them, and half-planes are convex.

Definition (Border-Line of a Half-Plane)

EO(H) = l ⇔def ∀P [P ι l ⇔ EGSW(H, P)]

3.3 Simple and Complex Shape Curves

Curves are usually not described in a geometric framework. But since we need a basis
to describe diverse contours of real-world objects, we cannot limit ourselves to
straight lines and line segments. Therefore, we introduce shape curves as geometric
entities. According to the current context we confine ourselves to curves that do not
branch or intersect themselves like the curve of the figure eight. But it will be
obvious, how our characterization of shape curves can be generalized.

Curves and points are related by incidence. Arcs and (line) segments are the sim-
plest curves. We proceed by defining segments and arcs first and then presenting the
general axioms for curves. On this basis we give a classification of points relative to
curves, including a general notion of vertex.



Definition (Enclosed Point of a Curve, Segment, Endpoint of a Segment)
A point is enclosed by a curve, if it lies between two points of the curve.

HQF(c, Q) ⇔def ∃P ∃R [P ι c ∧ R ι c ∧ β(P, Q, R)]
Segments are connected and bounded parts of lines. Thus, they can be described on
the basis of betweenness. Any segment has two points such that a point is incident
with the segment, exactly if it lies between them or is identical to one of them.

VHJ(s) ⇔def ∃P ∃Q ∀R [R ι s ⇔ β(P, R, Q) ∨ P = R ∨ Q = R]
It is convenient to use the notion of endpoint in specifying segments. Endpoints are
those points of segments that do not lie between any other points of the segment.

HSWVHJ(P, s) ⇔def P ι s ∧ VHJ(s) ∧ ¬HQF(s, P)
The definition for ‘segment’ guarantees that the points of a segment are incident with
one line, that segments are convex, and that segments have (exactly) two endpoints.
As a consequence of the axiom that curves can be distinguished by the points on them
(C11), we will derive that different segments have different pairs of endpoints.

Definition (Supporting Half-Plane, Outer Smooth Point, Outer Vertex)
The description of arcs is more complex. As a preparation we need a way to classify
points on curves. The following definition of the supporting half-plane and its border-
line is the fundamental step towards the classification we need.

Half-plane H supports point P with respect to curve c, symbolized by VXS(H, P, c),
if P is incident with c and with the border-line of H, and every point incident with c is
incident with the half-plane. Border-lines of supporting half-planes are tangents to the
curve in this point.

VXS(H, P, c) ⇔def P ι c ∧ P ι EO(H) ∧ ∀Q [Q ι c ⇒ Q ι H]
We call a point P an outer smooth point of curve c, symbolized by�VSWR(P, c), iff it is
incident with c and all supporting half-planes of P with respect to c have the same
border-line.

VSWR(P, c) ⇔def P ι c ∧ ∃H [VXS(H, P, c) ∧ ∀H’ [VXS(H’, P, c) ⇒ EO(H) = EO(H’)]]
If, in contrast, several half-planes with different border-lines support one point P with
respect to a curve c, then we call P outer vertex of c (YW[R(P, c); see Fig. 5).

YW[R(P, c) ⇔def P ι c ∧ ∃H ∃H’ [VXS(H, P, c) ∧ VXS(H’, P, c) ∧ EO(H) ≠ EO(H’)]

HH

bl( )Hbl( )H

P

c

Fig. 5. An outer vertex

In differential geometry uniquely determined tangents ensure that a curve described
by real coordinates is differentiable at that point. That we can capture this notion in
our more general framework shows that the notion of differentiability and the use of
real coordinates is not essential to describe a smooth point.



Since all points of a segment are supported by the half-planes bordered by the line
the segment lies on, all points of a segment are outer smooth points or outer vertices
and the outer vertices are exactly the endpoints. Line segments are straight. In order to
allow curves to be smoothly bent, we introduce arcs. First, we give the complete defi-
nition, then we comment the individual clauses of the definition.

Definition (Arc)
An arc is a curve that does not enclose any point on itself, and any point on it is sup-
ported by a half-plane. (Therefore, arcs contain only outer smooth points and outer
vertices.) An arc has two outer vertices, and one half-plane supports all outer vertices.
(This excludes more than two outer vertices.) For any point R that does not lie on the
arc and is not enclosed by the arc, there is a segment such that the arc is between R
and the segment in the following sense: any point on the arc is between R and some
point on the segment and for any point on the segment there is a point on the arc
between this point and R. More informally stated: The central projection from R (the
central point) maps the arc bijectively onto the segment (see Fig. 6.c). Therefore the
denseness and rectifiability of segments are passed on to arcs.

DUF(a) ⇔def ∀P [P ι a ⇒ ¬HQF(a, P) ∧ ∃H [VXS(H, P, a)]]  ∧ 
∃P ∃Q [P ≠ Q ∧ YW[R(P, a) ∧ YW[R(Q, a)] ∧ 
∃H [∀P [YW[R(P, a) ⇒ VXS(H, P, a)]]  ∧ 
∀R [¬(R ι a) ∧ ¬HQF(a, R) ⇒

∃s [VHJ(s) ∧ ∀Q [Q ι s ⇒ ∃P [P ι a ∧ β(R, P, Q)]] 
∧ ∀P [P ι a ⇒ ∃Q [Q ι s ∧ β(R, P, Q)]]]]

P1 P2
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bl( )H

H

a*
P1 P2bl( )H
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P

Q

R

s

a. b. c.

Fig. 6. The definition of DUF guarantees a supporting half-plane like H in (a) and excludes that
a* in (b) is an arc. (c) is an illustration of the last clause of the definition of DUF

Definition (Part of a Curve, Simple Part of a Curve, Endpoint of a Curve,
Curves Meeting at an Endpoint, Thin at P)
A curve c’ is part of another curve c or a sub-curve of c, if all points of c’ are incident
with c.9

c’ É c ⇔def ∀P [P ι c’ ⇒ P ι c]
We call curve c’ a simple part of curve c (in symbols c’ $É c), if c’ is a segment or an
arc and part of c.

c’ $É c ⇔def (VHJ(c’) ∨ DUF(c’)) ∧ c’ É c

                                                          
9 The sub-curves of an open curve are related according to interval relations as investigated by

Knauff et al. (1998).



An endpoint of a curve is on the curve and of any two simple shape curve parts that
include it one is part of the other.

HSW(P, c) ⇔def P ι c ∧ ∀c1, c2 [c1 $É c ∧ c2 $É c ∧ P ι c1 ∧ P ι c2 ⇒
�c1 É c2 ∨ c2 É c1)]

Two shape curves c, c’ meet at endpoint P, symbolized by PHHW(P, c, c’), if P is a
common point and all their common points are endpoints. (This allows two curves to
meet at both ends.)

PHHW(P, c, c’) ⇔def P ι c ∧ P ι c’ ∧ ∀Q [Q ι c ∧ Q ι c’ ⇒ HSW(Q, c) ∧ HSW(Q, c’)]
A curve c is thin at point P, if P is on c and there is a line l, such that P is on l and
between P and any other point both on c and l there is a point that is not on c.

WKLQ(c, P) ⇔def P ι c ∧ ∃l [P ι l ∧ ∀Q [Q ι l ∧ Q ι c ∧ P ≠ Q ⇒
∃R [β(P, R, Q) ∧ ¬(R ι c)]]]

Considering segments and arcs we find that they are thin by definition at all their
points, and that the outer vertices of segments are their endpoints also in the general
sense defined here.

Axioms for Shape Curves
On this basis we can give the collection of axioms for curves. First, we exclude space-
filling curves by stating that curves are thin at all their points (C1). This corresponds
to Cantor’s definition (cf. Parchomenko 1957).

(C1) ∀c ∀P [P ι c ⇒ WKLQ(c, P)]
Second, all points of a curve are incident with a simple part of that curve (C2), and no
point of a curve is the meeting point of three (or more) simple parts of the curve (C3).

(C2) ∀c ∀P [P ι c ⇒ ∃c’ [c’ $É c ∧ P ι c’]]

(C3) ∀c1 ∀c2 ∀c3 [∃c [c1 $É c ∧ c2 $É c ∧ c3$É c] ⇒
¬∃P [PHHW(P, c1, c2) ∧ PHHW(P, c1, c3) ∧ PHHW(P, c2, c3)]]

Curves have at most two endpoints (C4) and, if a curve has one endpoint, then it has
another one (C5).

(C4) ∀c ∀P ∀Q ∀R [HSW(P, c) ∧�HSW(Q, c) ∧�HSW(R, c) ⇒ (P = Q ∨ P = R ∨ Q = R)]

(C5) ∀c ∀P [HSW(P, c) ⇒ ∃Q [HSW(Q, c) ∧ P ≠ Q]
If two curves meet at one endpoint, then there is a curve that has exactly the points of
the two given curves (C6). On the other hand, if a curve c1 is part of another curve c,
then there is an additional sub-curve c2 of c that meets c1 (C7). This secures that
curves are (path-)connected.

(C6) ∀c1 ∀c2 [∃P [PHHW(P, c1, c2)] ⇒ ∃c ∀Q [Q ι c ⇔ (Q ι c1 ∨ Q ι c2)]

(C7) ∀c ∀c1 [c1 É c ∧ c ≠ c1 ⇒ ∃c2 ∃P [c2 É c ∧ PHHW(P, c1, c2)]]
Axiom (C8) secures that every curve is constituted by finitely many simple curves.
We have to notice that this formulation needs quantification over natural numbers.

(C8) ∀c ∃n ∃c1 …∃cn[c1$É c ∧ … ∧ cn$É c ∧ ∀P [P ι c ⇒ (P ι c1 ∨ … ∨ P ι cn)]]
As an additional axiom we assume that any two points define a segment such that
they are its endpoints (C9).

(C9) ∀P ∀Q [P ≠ Q ⇒ ∃s [VHJ(s) ∧ HSWVHJ(P, s) ∧ HSWVHJ(Q, s)]]



Axiom (C10) states that for every arc a and two points on it there is an arc that has
exactly those points of a that lie in a half-plane bordered by a line through the two
points. (One simple result is that the outer vertices of arcs are their (only) endpoints.)
(C10) ∀a ∀P ∀Q [DUF(a) ∧ P ≠ Q ∧ P ι a ∧ Q ι a ⇒

∃a’ ∃H [DUF(a’) ∧ P ι EO(H) ∧ Q ι EO(H) ∧
∀R [R ι a’ ⇔ R ι a ∧ R ι H]]]

Finally, curves differ in the points they are incident with (C11). Therefore, curves can
be represented as sets of points, although we do not employ such a representation.

(C11) ∀c ∀c’ [∀P [P ι c ⇔ P ι c’] ⇒ c = c’]

Definition (Vertex of a Curve, Smooth Point of a Curve, Turning Point of a
Curve, Open Shape Curve, Sum of Two Meeting Curves)
We call a point P a smooth point of a curve c, symbolized by VSW(P, c), if it is an outer
smooth point of a sub-curve of c.

VSW(P, c) ⇔def P ι c ∧ ∃c’ [c’ É c ∧ VSWR(P, c’)]
If a point P is an outer vertex of a sub-curve of curve c and not an endpoint of this
sub-curve, then it is an inner vertex of c, symbolized by YW[(P, c) (see Fig. 7).

YW[(P, c) ⇔def P ι c ∧ ∃c’ [c’ É c ∧ ¬HSW(P, c’) ∧ YW[R(P, c’)]
A point P is called turning point of c (symbolized as WSW(P, c)), if it is an endpoint of
every sub-curve c’ such that P is supported by a half-plane with respect to c’.

WSW(P, c) ⇔def P ι c ∧ ¬HSW(P, c) ∧ ∀c’ [c’ É c ∧ ∃H [VXS(H, P, c’)] ⇒ HSW(P, c’)]]
It is possible to show that every point on a curve that is not an endpoint of this curve
belongs to exactly one of the three classes: The point is either a smooth point or a
turning point or an inner vertex.

If a shape curve c does not have an endpoint, then we call the shape curve closed
(in symbols: FO(c)). Otherwise we call the shape curve open.

FO(c) ⇔def ¬∃P [HSW(P, c)]
If two shape curves c1 and c2 meet, then we call the curve c that has exactly the points
of c1 and c2 (see C6 and C11) their sum (symbolized as c = c1 ï c2).

c = c1 ï c2 ⇔def ∀Q [Q ι c ⇔ (Q ι c1 ∨ Q ι c2)]

PP

c

c
c

Fig. 7. A curve with two inner vertices

3.4 Shape Regions

The characterization of shape regions we present here is not meant to be a worked out
theory of regions in general as, e.g., underlying the calculus investigated by Renz &



Nebel (1998). It just needs to fit certain purposes for describing corners. The most
important aspect for this purpose is that regions are bounded by closed curves. One
consequence is that they are connected and have no holes.

Definition (Part of a Region, Boundary Point of a Region, Convex)
A region Reg’ is part of another region Reg or a sub-region of Reg, if all points of
Reg’ are incident with Reg.

Reg’ É Reg ⇔def ∀P [P ι Reg’ ⇒ P ι Reg]
A point is a boundary point of a region Reg, if it is in Reg and any point lying
between it and a point not in Reg is also not in Reg.

EGSW(Reg, P) ⇔def P ι Reg ∧ ∃R [¬(R ι Reg) ∧ ∀Q [β(P, Q, R) ⇒ ¬(Q ι Reg)]]

A region is convex, if every point between two points of the region is in the region.

FY[(Reg) ⇔def ∀Q [∃P ∃R [P ι Reg ∧ R ι Reg ∧ β(P, Q, R)] ⇒ Q ι Reg]

Axioms for (Shape) Regions
The axioms for shape regions state that every region has a boundary that is a closed
curve (R1), that it includes a point that is not a boundary point (R2), that between any
point (properly) in the region and any point outside the region there is a boundary
point of the region (R3), that shape regions do not contain any straight line
completely (R4), and that two regions are distinguished by the points in them (R5).

(R1) ∀Reg ∃c [FO(c) ∧ ∀P [P ι c ⇔ EGSW(Reg, P)]]

(R2) ∀Reg ∃P [P ι Reg ∧ ¬EGSW(Reg, P)]

(R3) ∀Reg ∀P [P ι Reg ∧ ¬EGSW(Reg, P) ⇒
∀R [¬(R ι Reg) ⇒ ∃Q [β(P, Q, R) ∧ EGSW(Reg, Q)]]]

(R4) ∀Reg ∀l ∃P [P ι l ∧ ¬(P ι Reg)]

(R5) ∀Reg ∀Reg’ [∀P [P ι Reg ⇔ P ι Reg’] ⇒ Reg = Reg’]
Axiom (R4) guarantees that the complement of a region is not a region itself. Since
every shape region has a uniquely determined boundary curve, we use the notion
EG(Reg) to refer to the boundary of region Reg.

Definition (Boundary of a Region)

EG(Reg) = c ⇔def ∀P [P ι c ⇔ EGSW(Reg, P)]

The geometric framework developed in this section is not specialized to the con-
cepts FRUQHU and NLQN that we investigate in the present paper. It can be applied to any
contour or planar drawing of a physical object without holes. Since it is formulated
without reference to coordinates and differentiability, we have shown that formal
representation and characterization of shape features does not presuppose the use of
differential geometry. Additionally, the geometric system does not introduce or
measure angles. As a consequence, the framework is not strong enough to specify
orthogonality, but could be enriched by a group of congruence axioms, if necessary.
In the next section we show that this general framework is sufficient to characterize
the geometric aspects of FRUQHU and NLQN.



4 Characterizations of &RUQHU and .LQN

The framework of planar shape geometry forms the basis for the formal characteriza-
tions of FRUQHU and NLQN. Based on the geometric constellation described by these con-
cepts there are several alternatives to select one of the entities involved as the referent
of the corresponding nouns. To give an impression of the general spectrum of possi-
bilities and to show the independence of this problem from the geometric specifica-
tion, we propose a selection of alternatives. The linguistic analysis in the next section
discusses these characterizations in order to develop criteria to select among them.

To refer to the mapping of objects to their spatial conceptualization (see section 2),
we employ a function named ORF. Objects are referred to by O and O’. We use the
notion ‘OLQHDU(ORF(O))’ to state that the representation of object O is a shape curve and
‘SODQDU(ORF(O))’ to state that it is a shape region.

ORF: objects → shape regions ∪ shape curves

4.1 Characterizations of &RUQHU

We give five alternatives for the characterizations of FRUQHU. They differ with respect to
the entity they directly specify: The referent can be a point, a boundary, a region or an
object part. In addition, two characteristic regions are discussed as referents of Ecke.
They agree in assuming the object in question to be planar and in their specification
of the basic geometric structure. All characterizations share the geometric character-
istics that an inner vertex and a part of the object’s boundary that is constituted by two
segments meeting at the vertex are involved.

Corners as Points: &RUQHUSW
The first characterization (named ‘FRUQHUSW’) focuses on the vertex of the boundary of
the object as the geometric referent of the noun Ecke. It says that the corner P of a
planar object O is a vertex of O’s boundary given by two straight boundary parts (s1

and s2) that meet non-smoothly.

FRUQHUSW(P, O) ⇔def SODQDU(ORF(O)) ∧ YW[(P, EG(ORF(O))) ∧ ∃s1 ∃s2 [VHJ(s1) ∧ VHJ(s2)
∧ PHHW(P, s1, s2) ∧ s1 É EG(ORF(O)) ∧ s2 É EG(ORF(O))]

P

s1

s2

loc( )O

Fig. 8. Depiction of a corner for the characterizations of FRUQHUSW and FRUQHUF

Corners as Curves: &RUQHUF
The characterization named ‘FRUQHUF’ singles out the boundary part formed by the two
meeting segments. It says that a corner c of an object O is a part of the boundary of O



that is constituted by two straight boundary parts (s1 and s2) that meet in a vertex P.
Thus, the geometric referent of the noun Ecke is an open curve. This specification is
indefinite concerning the extent of the denoted sub-curve. It does not include any
assumption concerning the length of the constituting segments. This reflects the
indefiniteness of a corner’s size discussed in section 2.

FRUQHUF(c, O) ⇔def SODQDU(ORF(O)) ∧ c É EG(ORF(O)) ∧ ∃P [YW[(P, EG(ORF(O))) ∧
∃s1 ∃s2 [VHJ(s1) ∧ VHJ(s2) ∧ PHHW(P, s1, s2) ∧ c = s1 ï s2]]

Corners as Regions: &RUQHU5HJ
In the third characterization we shift the focus to the region included by the boundary
part specified by FRUQHUF. It states that the corner Reg of object O is a convex sub-re-
gion of the object’s region, such that the two regions share a boundary part
constituted by straight segments (s1 and s2) that meet in a vertex P. This specification
is neutral concerning the extent and the exact shape of the region: it can be the
triangle or a rectangle enclosed by the boundary part, or some other convex region.
(Based on evidence for or against some shape, this characterization could of course be
refined.)

FRUQHU5HJ(Reg, O) ⇔def SODQDU(ORF(O)) ∧ Reg É ORF(O) ∧ FY[(Reg) ∧
∃P [YW[(P, EG(ORF(O))) ∧  
∃s1 ∃s2 [VHJ(s1) ∧ VHJ(s2) ∧ PHHW(P, s1, s2) ∧ 
∀Q [Q ι s1 ï s2 ⇔ EGSW(ORF(O), Q) ∧ EGSW(Reg, Q)]]]
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Fig. 9. Depiction of a corner for characterizations of FRUQHU5HJ and FRUQHU2

Corners as Object Parts: &RUQHU2
The fourth characterization named ‘FRUQHU2¶ is analogous to FRUQHU5HJ except that not the
region but an object part occupying the region is singled out. This reflects the intui-
tion that corners are parts of objects. The region of the object part (ORF(O’)) has to
fulfill the same conditions as the region in the characterization of FRUQHU5HJ.

FRUQHU2(O’, O) ⇔def SODQDU(ORF(O)) ∧ ORF(O’) É ORF(O) ∧ FY[(ORF(O’)) ∧
∃P [YW[(P, EG(ORF(O))) ∧
∃s1 ∃s2 [VHJ(s1) ∧ VHJ(s2) ∧ PHHW(P, s1, s2) ∧ 
∀Q [Q ι s1 ï s2 ⇔ EGSW(ORF(O), Q) ∧ EGSW(ORF(O’), Q)]]]

Corners as Internally Structured Regions: &RUQHUV5HJ
In contrast to the characterizations above, FRUQHUV5HJ specifies a corner of an object O as
an internally structured region Reg (see Fig. 10). It is modeled as a convex region
again, though this region is not completely included in the object’s region, but inter-
sects with it. Its internal structure includes the vertex P and two segments (s1 and s2)



that are part of the boundary of the object’s region and meet at P. This characteriza-
tion treats the convex and the concave region parts around the vertex as more
symmetric than FRUQHU5HJ.

FRUQHUV5HJ(Reg, O) ⇔def SODQDU(ORF(O)) ∧ FY[(Reg) ∧ ∃P [YW[(P, EG(ORF(O))) ∧
∃s1 ∃s2 [VHJ(s1) ∧ VHJ(s2) ∧ PHHW(P, s1, s2) ∧ 
∀Q [Q ι s1 ï s2 ⇔ EGSW(ORF(O), Q) ∧ Q ι Reg]]]
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Fig. 10. Depiction of a corner for the characterization of FRUQHUV5HJ

4.2 Characterizations of .LQN

Since kinks are ascribed to linear objects, they can be treated in a manner similar to
the first or second characterization of FRUQHU. But there are two main differences for the
characterization of NLQN: First of all, the object itself and not its boundary specifies the
underlying curve. Secondly, the simple curve parts that form the vertex of a kink need
not to be straight. The corresponding sub-curves can be arcs as well.

Kinks as Points: .LQNSW
In the characterization called ‘NLQNSW’, a kink is just a vertex of a linear object.

NLQNSW(P, O) ⇔def OLQHDU(ORF(O)) ∧ YW[(P, ORF(O))

Kinks as Curve Parts: .LQNF
In the second characterization, a kink is a part of the curve including exactly one ver-
tex. The curve is constituted by two simple curves meeting in this vertex.

NLQNF(c, O) ⇔def OLQHDU(ORF(O)) ∧ c É ORF(O) ∧ ∃P [YW[(P, c) ∧
∃c1 ∃c2 [(VHJ(c1) ∨ DUF(c1)) ∧ (VHJ(c2) ∨ DUF(c2)) ∧ 
PHHW(P, c1, c2) ∧ c = c1 ï c2]]

The axiomatic characterizations given in this section form the basis for our further
discussion of the semantics of Ecke as one example of shape nouns. Based on its
interaction with spatial prepositions we aim at selecting among the alternatives the
proper conceptual counterpart by answering the question, what kind of entities are
denoted by Ecke?



5 An Analysis of Ecke

Having given proposals for the geometric characterization of the concepts FRUQHU and
NLQN� we now return to the relation between concepts and lexemes as discussed in sec-
tion 1 (see Fig. 1). Whereas the axiomatic method is able to yield a variety of con-
ceptual designs for the semantics of shape nouns, the linguistic analysis shall give
criteria to choose among them. The aim of discussing the interpretations of Ecke in
different linguistic contexts is to extract the most appropriate conceptual structure as
the semantics of the lexeme.

The notion ‘shape noun’ reflects the idea that these nouns encode shape features of
objects. The referent of the relational noun Ecke is established on the basis of the
shape of a complex object like a room or a sheet of paper. Shape properties are spatial
properties of extended objects, i.e. objects that properly occupy some area. In lexical
semantics spatial properties are mainly investigated in relation to prepositions: Topo-
logical prepositions like in, on or at spatially relate two objects and thereby impose
requirements on the spatial properties of these objects. This is made explicit by
Herskovits (1986), and–for German in–by Pribbenow (1993) and Buschbeck-Wolff
(1994). Therefore, the analysis of the shape noun Ecke in relation to topological
prepositions should give us insights concerning the spatial properties of its referents.
Our discussion is based on prepositional phrases containing the topological preposi-
tions in (in) and an (at, on), and Ecke as the head noun of their internal argument. We
start by considering the German preposition in.

As assumed by Bierwisch (1988), Klein (1991), Herweg (1989) and Wunderlich &
Herweg (1991), the semantics of in is roughly that an object is localized in the interior
of another object; thus in yields the relation of local containment. This containment
may be realized in different ways; i.e., the localized object being in the interior of a
hollow object (der Stuhl im Zimmer / the chair in the room) or being contained in a
solid object (der Splitter im Finger / the splinter in the finger). Leaving details aside,
one object is localized in another object, the so-called ‘reference object’, if and only if
the reference object supplies a spatial container for the localized object. Following
this line, (4) leads to the demand that Ecke has to supply a region in which chairs or
spots can be contained. 10

(4) a. der Stuhl in der Ecke des Zimmers (the chair in the corner of the room)
b. der Fleck in der Ecke des Teppichs (the spot in the corner of the carpet)
c. der Kratzer in der Ecke des Fensters (the scratch in the corner of the window)
d. der Riß in der Ecke des Papiers (the tear in the corner of the sheet)

                                                          
10 Note that this requirement of supplying a region only holds, if the contained object is two- or

three-dimensional. Points and linear objects like kinks can be contained in linearly conceptu-
alized objects like sticks as well (as in der Knick in dem Stab (the kink in the stick)).



In (4.b–d) the localized object is contained in a planar region with a vertex and two
boundary parts of the objects as boundaries of the corner. In (4.a), a three-dimensional
corner provides the region for the localized three-dimensional object, the chair.11

As in demands a region� the formal characterizations of Ecke to denote a point
(FRUQHUSW) or a curve (FRUQHUF) seem to be less plausible. Instead, Ecke should be captured
either as denoting a region, or an object part that, like other material objects that can
occur as reference objects, has to be mapped onto its IN-region, as suggested in
Herskovits (1986). But based on (4) we can exclude one of the region-based charac-
terizations of Ecke, namely FRUQHUV5HJ. In der Ecke cannot specify a region outside the
underlying object (e.g., the room). Since the region FRUQHUV5HJ spreads outside the
object, it does not qualify as the referent of Ecke.

Now let us turn to another topological preposition, an (at). Following Herweg
(1989), an means ‘in the region proximal to a reference object’.12 Obviously, the
proximal region that an might bring about varies if the corner is a vertex, a curve, an
object part or a region. Consider the following examples:

(5) a. Der Kiosk ist an der Ecke.
(The kiosk is at the corner.)

b. Die Spinne sitzt an der Ecke des Fensters.
(The spider is sitting at the corner of the window.)

The interpretation of the examples in (5) allows the localized objects to be inside or
outside the corner region as long as they are close enough. In (5.a), the kiosk is
nearby a corner, e.g., the corner constituted by a crossing or the corner of a house. It
can even be inside the house with the corner. Accordingly, (5.b) does not inform us
whether the spider is sitting on the outer edge of the window frame or just in the
corner, i.e. on the window. Thus, an der Ecke allows the localized object to be in the
exterior as well as in the interior of the corner with respect to the reference object
denoted by Ecke.

In contrast to the results for the preposition in, combinations with an suggest a
more symmetric treatment of the inside and the outside of corners. This prefers the
formal characterizations of FRUQHUSW and FRUQHUF above FRUQHU5HJ and FRUQHUO.

This observation can have consequences for the semantics of the topological
prepositions we employed for analyzing Ecke: In connection with nouns denoting
concrete objects with clear boundaries, an and in exclude each other. In other words,
if an object is in a reference object then it is not at (an) the reference object, and vice
versa. We found that this dependence does not exist for Ecke. An der Ecke and in der
Ecke may denote overlapping regions. Thus� there is no mutual exclusion of the

                                                          
11 Examples like der Stuhl in der Ecke des Teppichs (the chair in the corner of the carpet) can

be seen as evidence that an analysis based on planar conceptualizations would also be suffi-
cient for (4.a), as in this example the relevant containing region is planar.

12 Herweg (1989) contrasts an with bei (near, by), which, according to his analysis, additionally
specifies the condition ‘not being in contact with the reference object’. Thus, an allows
contact, but does not require it, whereas bei excludes contact. Other authors assume that an
requires contact and bei excludes contact. Note that the difference ‘allowing contact’ vs.
‘requiring contact’ for the semantics of an is not essential for the following.



outside of an object (which is relevant for an) and the inside of an object (being
relevant for in).

One way to handle this may be to analyze Ecke on the conceptual level as FRUQHUF
and in and an as mapping this partial contour to regions based on convexity and
closeness and contact, respectively. But another consequence might be to have
another look at the shape dependencies of in and an by further analyses of combina-
tions with other shape nouns.

The following examples give further evidence that the choice we planed to make is
not clearly decided by the linguistic behavior of Ecke. They emphasize the role of the
vertex point in the concept of FRUQHU. They give evidence that the reference to the ver-
tex can be regarded as essential for the linguistic behavior of Ecke.

Considering (6.a), the cupboard has to be localized as close as possible to the wall
to make the sentence true. If genau (exactly) is omitted, the cupboard might also be
standing further away from the wall; an thus allows for a proximal region which is
not restricted to the closest region. But genau restricts the possible ranges of locations
for the localized object. Genau therefore serves as a test to determine where the exact
AN-region is to find, and, in doing so, it indicates which part of the reference object
this region has to be close to. In (6.a), it is the surface of the wall.

(6) a. Der Schrank steht genau an der Wand.
(The cupboard is standing exactly at the wall.)

b. Die Spinne sitzt genau an der Ecke des Fensters.
(The spider is sitting exactly at the corner of the window.)

The interpretation of (6.b), is that the spider is sitting as close as possible to the ver-
tex. Hence, we are led to conclude that FRUQHUSW is the most plausible characterization of
Ecke in this context. Example (7) offers additional evidence in this direction.

(7) Der Teppich reicht bis an die Ecke des Zimmers.
(The carpet reaches the corner of the room.)

In (7), reichen bis (to reach) uses the directional version of an (obvious from the
accusative case of die Ecke in contrast to the dative case of der Ecke in, e.g., (6.b)).
The interpretation we derive is that some edge (or corner) of the carpet is as close as
possible to the vertex of the room’s corner. Thus, if exactness is emphasized in con-
nection to Ecke, closeness (or contact) to the vertex is the preferred interpretation.

Concerning the axiomatic characterization this seems to suggest that Ecke refers to
the vertex. We even might conclude that FRUQHU5HJ is inadequate since being in the
region is not enough for being exactly at the corner. On the other hand, assuming the
vertex to be the referent of Ecke leads to, as stated above, more complex explanations
for combinations with in.

Summarizing the above we find that Ecke does not behave as nouns denoting con-
crete objects do. In connection with in and an we see that Ecke does not clearly dis-
tinguish between interior and exterior. In connection with in, Ecke seems to refer to a
region or an object part, and the conceptualization as a vertex is excluded. But the
preposition an seems to require direct access to the vertex.

We conclude that Ecke has a variable denotation within a conceptual spectrum
based on a stable geometric characterization. Hence, it behaves like a polysemous
word, comparable to institution words like school, university, or government investi-



gated by Bierwisch (1983). These words offer systematic alternations, including the
readings institution and building (compare The school bored him to death and The
school is burning). These readings correspond to different conceptual variants, com-
parable to the variants we found for Ecke.

In this paper, we have offered five options for conceptually different referents of
Ecke. We only exclude one of them on the basis of linguistic considerations, namely
FRUQHUV5HJ, but found evidence for all the others. Thus the spectrum still ranges from a
vertex (FRUQHUSW) via a curve or a region (FRUQHUF� FRUQHU5HJ) to an object part (FRUQHU2).

6 Conclusion

The present paper offers a formal, geometric approach to describe shape and specify
shape concepts, which are part of our spatial knowledge that underlies the semantics
of natural language expressions and that diverse cognitive abilities like object recog-
nition and haptic or auditory perception are based on. This characterization is based
on features of the contour of an object, rather than its axes.

The formal description is formulated in planar shape geometry developed in this
paper as well. Employing the axiomatic method it enriches the basic inventory of
planar ordering geometry by shape curves. In this framework we are able to dispense
with the use of coordinates and limits, thus showing that a formal description of
curves–as needed for the current purpose of describing contours–does not require the
notions of differential geometry. Planar shape geometry supplies a general inventory
for the description of contours of planar objects without holes. Thus, we offer a tool
for future research on contour information, especially concepts that make use of verti-
ces, e.g., concepts related to lexemes like apex, point, thorn, horn, tip, etc.

The linguistic analysis of the German nouns Ecke and Knick sheds light on the
underlying concepts FRUQHU and NLQN. It yields the result that the concepts NLQN and FRUQHU
primarily differ in dimensionality information. In addition, we found that the behavior
of Ecke in combination with the topological prepositions in and an cannot systemati-
cally be explained on the basis of only one characterization for FRUQHU� Of the five
alternative characterizations we offered, we only found evidence to exclude one. This
also suggests that the case of analyzing in and an has to be reopened, especially in
combination with shape nouns in addition to nouns denoting concrete material and
bounded objects.
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