
Inference and Visualization of Spatial Relations�

Sylvia Wiebrock, Lars Wittenburg, Ute Schmid, and Fritz Wysotzki

Methods of Artificial Intelligence, Technical University of Berlin
FR 5–8, Franklinstraße 28/29, D 10587 Berlin

sppraum@cs.tu-berlin.de

http://ki.cs.tu-berlin.de/~sppraum

Abstract. We present an approach to spatial inference which is based
on the procedural semantics of spatial relations. In contrast to qualita-
tive reasoning, we do not use discrete symbolic models. Instead, rela-
tions between pairs of objects are represented by parameterized homo-
geneous transformation matrices with numerical constraints. A textual
description of a spatial scene is transformed into a graph with objects
and annotated local reference systems as nodes and relations as arcs.
Inference is realized by multiplication of transformation matrices, con-
straint propagation and verification. Constraints consisting of equations
and inequations containing trigonometric functions can be solved using
machine learning techniques. By assigning values to the parameters and
using heuristics for the placement of objects, a visualization of the de-
scribed spatial layout can be generated from the graph.

1 Introduction

Understanding descriptions of spatial layouts implies that questions about spa-
tial relations which were not included in the description can be answered, that
the described scene can be visualized, or that it can be judged whether a de-
piction corresponds to the described layout. We propose an AI approach which
realizes the first two claims: inference of spatial relations and construction of
visualizations. From an application perspective, understanding of linguistic de-
scriptions is a step towards a more natural human-machine communication, for
example in the domains of robot instructions (take the box from the right table)
and graphical user interfaces (put the mailbox next to the file-manager win-
dow). Furthermore, it might lead to a tool for visualization of textual descrip-
tions (Jörding and Wachsmuth 1996). From a cognitive science perspective, our
approach might provide a formal backbone to the theory of mental models in
text understanding (Johnson-Laird 1983; Claus et al. 1998). Mental models are
proposed to be the representation of a described situation that is constructed in
addition to a propositional representation.
� This research was supported by the Deutsche Forschungsgemeinschaft (DFG) in the
project “Modelling Inferences in Mental Models” (Wy 20/2–2) within the priority
program on spatial cognition (“Raumkognition”).

Ch. Freksa et al. (Eds.): Spatial Cognition II, LNAI 1849, pp. 212–224, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Inference and Visualization of Spatial Relations 213

sp
at

ia
l

selection
generationconstraints

with symbolic/numeric
graph

Labelled, directed

Visualization
spatial layout
Description of

Relative Object Localization

in
fe

re
nc

e

construction
updating

Fig. 1. Overview of the approach

In contrast to qualitative approaches to spatial reasoning, our approach is not
based on discrete, symbolic models. Instead, we propose a metric approach with
an underlying procedural semantics. While Clementini et al. (1997) demonstrate
the advantages of qualitative reasoning, there are some critical issues. Finding
the granularity appropriate for the problem and representing object orienta-
tions necessary to handle intrinsic relations are some of them. Besides, results
presented in Musto et al. (2000) indicate that information loss during relation
composition can be unacceptably high for long chains of qualitative inferences. In
their paper, they use a mixed approach: measured metric values are abstracted to
qualitative ones. In the example given, they delay the discretization to overcome
this problem, and first gather the metric values for some steps before switching
to qualitative values.

An overview of our quantitative approach is given in Fig. 1 (see also
Claus et al. (1998); Schmid et al. (1999) for a more detailed description). Input
into the system is the linguistic description of a spatial layout as a sequence of
propositions. From this description, a graph is constructed incrementally: each
object introduced in the text is represented as a node which is associated with a
canonical coordinate system. The origin of the coordinate system represents the
geometric center of the object. For objects with intrinsic axes, the positive x-axis
represents the intrinsic right, the positive y-axis the intrinsic front and the pos-
itive z-axis the intrinsic top. Extensions of objects are represented by variables
for their height, and their width and depth, or radius, respectively. Currently,
objects are restricted to cuboids and cylinders.

Relations between pairs of objects A and B are represented by constraints for
their transformation matrices (Ambler and Popplestone 1975). A homogeneous
4×4 transformation matrix contains a vector necessary to “translate” the origin
of an object A to the origin of an object B, and a rotational part that aligns A’s
coordinate system with B’s. The constraints restrict parameters of the transfor-
mation. For example, to represent right(A, B), “B is intrinsically right of A”,
the x-value of the translation vector has to be at least half the width of A plus
half the width of B to ensure nonoverlapping. Further constraints might restrict
the admissible deviation on the front-back axis, for example with respect to a

214 Sylvia Wiebrock et al.

defined sector for right (Hernández 1994, see Fig. 4(a)). Note that constraints
are equations and inequations defined on parameterized relational representa-
tions. Each given relation is introduced as a labelled directed arc into the graph.
Formally, the resulting graph represents the class of all models satisfying the
given constraints. That is, our formalization of a mental model, i.e. the graph
as a relational description together with the constraints on its parameters, de-
scribes sets of real spatial situations. This corresponds to the fact that language
is under-determined with respect to depictions and to the claim that mental
models represent classes of possible situations (Johnson-Laird 1983). Note that
as a consequence the inference mechanism manipulates implicitly sets of possible
real situations satisfying the constraints (i.e. the given relations)!

To infer relations between objects which were not given in the description,
a path between these objects has to be found and the matrices along this path
have to be multiplied. The resulting matrix with the constraints on its elements
can then be compared with the predefined spatial relations. If it satisfies the
constraints for such a relation, the relative position of the objects can be ver-
balized, otherwise it can at least be visualized. As is well known in robotics,
transformations involve trigonometric functions in general so that known meth-
ods for constraint solving cannot be applied for inference. For this general case
we propose to use a machine learning technique to induce the resulting relations
from training examples.

Generating a visualization of the described scene involves new problems,
because we have to find a globally consistent instantiation of all variables in the
graph that also satisfies the general constraint (not included in the graph) that
objects must be pairwise nonoverlapping. In the following, we will present our
approach to spatial inference, machine learning, and visualization in more detail.

2 Inference

Inferring the spatial relation between two objects consists in propagating the
constraints with respect to the positions of those objects and then checking which
(if any) of the defined relations hold. The most important questions are which
relations have to be inferred and when to infer them. This depends largely on
the assumptions we make of the mental model. Some possibilities are discussed
in Claus et al. (1998), Hörnig et al. (2000), and Hörnig et al. (1999).

While these questions are open, we organize the graph according to efficiency
considerations. The graph contains all the relations explicitly given plus the arcs
for the background knowledge that every object is in the room (thus ensuring
that the graph is always connected), and those arcs that have been inferred
after a query from the user. Inference is done when the relation between A
and B is explicitly queried by the user and there is no arc between them in
the graph, or when a relation between A and B is explicitly given and both
objects are already represented in the graph. In the latter case, we start the
inference process to ensure that the constraints on the (new) arc contain all the
information available about the relative positions of A and B. As the graph is

Inference and Visualization of Spatial Relations 215

connected, we can find a path between A and B, compute the transformation
matrix for it, and equate with the matrix for the given relation.

The problems concerning constraint handling are due to the fact that the con-
straints consist of equations and inequations with parameters and trigonometric
functions. Furthermore, we cannot always compare two constraints for the same
variable. Therefore, the inference process often consists in gathering constraints
for the variables rather than computing the intersection of those constraints and
simplifying the problem. The occurrence of trigonometric functions means that
for unknown rotations, algebraic methods cannot in general be applied to decide
the satisfaction of the constraint inequations.

In our first approach described in Claus et al. (1998), sizes of objects were
only constrained by the relations, e.g. in Fig. 3, we know that 2C.d + S.r ≤
∆

(S,W1)
x . Most constraints were purely symbolic. Considering that we need to

find “realistic” values for the visualization (cf. section 3), we have augmented
the object definitions to include default values and admissible intervals for the
extensions. If we also use default values for object orientations, checking con-
straint satisfaction can often be done by case analysis using instantiations of
the variables. This is shown in the example below. For the general case we have
experimented with machine learning programs. Some results are presented in
Sec. 2.2.

2.1 Example for the Inference of Spatial Relations

To keep things simple, consider the objects and relation definitions for the 2D
case shown in Fig. 2: persons are represented by circles with a radius r ∈ [0.2, 0.4],
fridges are rectangles with a width w ∈ [0.3, 0.4] and a depth d ∈ [0.3, 0.4],
cupboards are rectangles with a width w ∈ [0.4, 1.0] and a depth d ∈ [0.2, 0.5],
lamps are circles with a radius r ∈ [0.1, 0.5], and the room (not shown in the
figure) is a rectangle with a width w ∈ [1, 5] and a depth d ∈ [1.5, 5]. Persons,
fridges, and cupboards have intrinsic front and right sides1, while the orientation
of the lamp’s coordinate system is arbitrary.

For this example, the only defined relations are those for the four basic direc-
tions, where the center points of the located object must be on the corresponding
axis in the coordinate system of the relatum, and the additional relation at wall,
where the default is to place an object directly against the wall, but inference of
the relation is also possible when the distance is smaller than 0.5. The default
orientation for objects standing at the wall is to orient their front sides (if they
have an intrinsic front) away from it. The coordinate system for the walls are
chosen such that the y-axes are oriented counterclockwise along the walls, while
the positive x-axes always point outside the room (see Fig. 2).

Suppose we are given the propositions
(1) right(S,C) (“The cupboard C stands right of Stefanie S.”)
(2) at wall(W1,C) (“The cupboard stands at the wall W1.”, (1) and (2) are the
linearization of “The cupboard stands at the wall to the right of Stefanie.”)
1 The question of handedness is left out in this example.

216 Sylvia Wiebrock et al.

Person

Fridge Lamp

Cupboard

(a) Shapes and sizes

at wall

infer
fuzzy

place fixed

behind

left front

right

(b) A simple set of relations

Fig. 2. Example for objects and relations

(3) front(S,F) (“The fridge F stands in front of Stefanie.”)
(4) at wall(W2,F) (“The fridge stands at the wall W2.”, (3) and (4) are the
linearization of “The fridge stands at the wall in front of Stefanie.” Thus we
know that W1 �= W2.)
(5) left(F,L) (“The lamp L stands left of the fridge.”)
(6) right(C,L) (“The lamp stands right of the cupboard.”)

Each of the first five propositions introduces a new object. Thus there cannot
already be a path in the graph between the two objects, and no inference is
necessary. The constraints for the first five propositions are

∆
(S,C)
x ≥ S.r + C.d ∆

(S,C)
y = 0 θ(S,C) = 90◦

for (1) with the default orientation: front side away from the wall.

∆
(W1,C)
x = −C.d default placement directly at the wall for (2)

∆
(S,F)
y ≥ S.r + F.d ∆

(S,F)
x = 0 θ(S,F) = 180◦

for (3) with the default orientation: front side away from the wall.

∆
(W2,F)
x = −F.d default placement directly at the wall for (4),

and ∆
(F,L)
x ≤ −F.w − L.r ∆

(F,L)
y = 0 θ(F,L) = 0◦

default orientation aligned with the fridge as the relatum, because the lamp has
no intrinsic sides, for (5). When adding proposition (6), however, there is already
a path in the graph (see Fig. 3).2 We must now compute the transformation
matrix for the path L → F → S → C.3 Equating the transformation matrix
for the relation right(C,L) with the computed matrix we get

2 The node for the room and the arcs to the room node are not shown.
3 In the graph there is only an arc C → S, but arcs can easily be inverted.

Inference and Visualization of Spatial Relations 217

W2

S

C

F

C.w

F.d
F.w

S.r

W1

C.d

L.r

L

S C

F

W1
at_wall

L

front

right

at_wall

W2

left

Fig. 3. Situation after propositions (1) to (5)


 cos θ − sin θ ∆

(C,L)
x

sin θ cos θ 0
0 0 1


 =




0 −1 ∆
(S,F)
y

1 0 ∆
(F,L)
x + ∆

(S,C)
x

0 0 1




Therefore we know that θ = 90◦, ∆
(C,L)
x = ∆

(S,F)
y , and ∆

(F,L)
x = −∆

(S,C)
x

and can substitute for the variables on the left sides. These constraints express
the fact that the lamp must be positioned on the point where the left/right axis
of C’s coordinate system crosses the left/right axis of F ’s coordinate system.

Another situation arises, when a query is given to the system. For instance,
we might ask the question at wall(W?,L). This means we have to check for every
wall, whether the lamp is standing at it. This is done by finding a path between
the lamp and the corresponding wall, computing the transformation matrix and
then checking whether the constraints for the relation at wall are satisfied.

For the wall W1 we can compute T (W1,L) = T (W1,C) × T (C,L).
This matrix consists of a rotation matrix for 180◦,

∆
(W1,L)
x = −C.d and ∆

(W1,L)
y = ∆

(S,F)
y + ∆

(W1,C)
y

As shown in Fig. 2(b), the only constraint is ∆
(W1,L)
x ≥ −L.r − 0.5,

i.e. the distance of the lamp w.r.t. the wall must be at most 0.5.

Substituting for ∆
(W1,L)
x gives

−C.d ≥ −L.r − 0.5 ⇔ L.r ≥ C.d − 0.5.
If we assign C.d its maximal value, we get L.r ≥ 0.5 − 0.5 = 0
and from L.r > 0, we can conclude that the relation holds for all possible
values of C.d and L.r. Thus we know that at wall(W1,L) is true.
Analogously, we can prove that at wall(W2,L) holds.

218 Sylvia Wiebrock et al.

Now consider the case at wall(W3,L). Using the background knowledge
(a room has 4 walls, W1 is opposite W3), we can compute

T (W3,L) = T (W3,W1) × T (W1,L) (one possible path).
We get a rotation matrix for 0◦,

∆
(W3,L)
x = C.d − 2R.w, and ∆

(W3,L)
y = −∆

(S,F)
y − ∆

(W1,C)
y ,

where R.w is the width of the room. Again, we have to check whether

∆
(W3,L)
x ≥ −L.r − 0.5. Substituting for ∆

(W3,L)
x gives

C.d − 2R.w ≥ −L.r − 0.5 ⇔ L.r ≥ 2R.w − C.d − 0.5.
Checking for the upper bound of the right expression, we get

L.r ≥ 10 − 0.2 − 0.5 = 9.3.
This cannot be true, therefore we know that the lamp need not stand at W3.
To complete, we check for the lower bound of the right expression and get

L.r ≥ 2 − 0.5 − 0.5 = 1.

This is false, too. Thus we know that the lamp cannot stand at wall W3.
The computation for W4 is analogous.

2.2 Machine Learning

In the general case, the constraints for an intrinsic relation between two objects
contain the extensions of both objects, the elements of the translation vector, and
the elements of the rotation matrix. Even in the restricted case, where all objects
stand upright, and rotation is only allowed around the z-axis, the constraints
for a relation involve seven variables. For example, the binary relation right(x,y)
is transformed into a 7-dimensional constraint, represented by a region in the
7-dimensional parameter space. What we are really interested in is the border in
this space between the region(s) where the relation holds and the inadmissible
regions where it does not hold. An approximation of this border can be found
by machine learning programs.

In our case, such programs are fed a set of training data each consisting
of a 7-dimensional parameter vector, which uniquely describes a spatial con-
stellation of the two objects, and a class value (e.g. R for right and N for not
right, see Fig. 4(a)). From these training samples, a classifier is constructed that
can decide for arbitrary constellations whether an object falls into the right
region of another object or not. Using this classifier is in general faster than
checking the (in)equations for the parameter values for high dimensional pa-
rameter spaces (in the simple example below, there are 12 inequations). For
the learning task, in principle any standard algorithm for classification learning,
which separates class regions in a continuous parameter space, can be applied.
As high accuracy in approximating the class boundaries is wanted in our case,
an artificial neuronal net of the Perceptron type was preferred. We have used
Dipol92 (Schulmeister and Wysotzki 1997), a hybrid (statistical/neural) algo-
rithm that computes for a given training set and given numbers of clusters for
every class, e.g. R and N (the numbers of clusters are the only parameters to
be chosen by the user), the discriminating hyperplanes for each pair of clusters.

Inference and Visualization of Spatial Relations 219

By decomposing each class into a set of clusters, a piecewise linear approxima-
tion of the class boundaries is computed, which can be converted into a decision
function for the constraint satisfaction problem, which could then be used in the
inference process.

A critical issue is the distribution and number of training data to be gen-
erated to obtain satisfactorily low error rates. The task was to try whether we
can get smaller errors while using fewer data for the training set when we selec-
tively generate data near the boundary to be learned. For the sample problem
shown below, we had admissible intervals for all seven parameters, and also pre-
ferred intervals where more data had to be generated. This was motivated by
the assumption that medium sized objects occur more often (i.e. have higher
probability) than very small or very big ones, and the distance values Dx(A, B)
can only reach their maximum when both objects are positioned at opposite
walls. The seven parameter values were then generated independently (i.e. a
small A.w value can be paired with a large A.d value), and the class value (R
or N) was computed using the (in)equations defining the constraint (relation)
right. As right is defined such that B must be completely included in the right
region of A, only ≈ 20% of the data were in class R when data were generated
randomly, but respecting the given admissible and preferred intervals for each
parameter. This method was called REF. But since our task is learning class
boundaries by exploration (“active learning”), i.e. by generating training sets, it
is desirable to have equal a priori probabilities for both classes to get optimal
decision functions (classifiers).

This problem is discussed in Stolp et al. (1999). Among other methods we
tried out, EPS2 was best. Here, data are generated according to the REF method
and then filtered. This means, only those data vectors (A.w, A.d, B.w, B.d,
Dx(A, B), Dy(A, B), θ), where changing any one parameter value by +ε or −ε

x

y

xy

A

front

B.wA.w

left
right

behind

B

Dy(A,B)A.d
B.d

Dx(A,B) θ

(a) Right for two rectangles

Data train test
gen. ε error error

1000 points for training
REF / 0.50% 6.64%
EPS2 1.5 1.20% 3.24%
2500 points for training
REF / 1.36% 5.20%
EPS2 1.5 5.28% 2.66%
25000 points for training
REF / 3.04% 3.75%
EPS2 1.5 8.10% 1.93%

(b) Results with Dipol

Fig. 4. Learning right for two rectangles with Dipol

220 Sylvia Wiebrock et al.

changed the class (from N to R or vice versa) were kept. This has the advantage
that all values are near the critical border, both classes get the same number of
training samples, and still the preferred intervals for every variable are respected.
An appropriate value for ε was found in some training runs. The number of clus-
ters for each class was set to 50 for both R and N . The table in Fig. 4(b) shows
the train errors (errors on the data set used for training) and test errors (errors
on a different test set of data for the learned classifier). For testing, a set with
100 000 points generated with REF was used throughout. As can be seen in the
table, the generalization is quite good for both methods. For reasonably large
sets of training data, the errors on the training set and on the test set are nearly
equal for REF. Due to the fact that all data points are near the border, EPS2
has higher errors on the training set, but surprisingly small errors on the test set.
Our main goal, to achieve good error rates with a small number of training data,
was fulfilled. Using EPS2 for generating data, we got a lower test error with 1000
training vectors than by using REF with 25.000 training vectors. A more detailed
account is given in Stolp et al. (1999) and Wiebrock and Wysotzki (1999). Cur-
rently, we are working on the generation of depictions using the learned regions
where the relations hold. Depending on the efficiency of this method, we may
use it in the future as an alternative to the algorithm described below.

3 Generating Depictions

When generating depictions, we are faced with several problems: all variables
in the graph must be instantiated, in addition to the explicitly represented con-
straints we must ensure that two objects do not overlap, and we must choose a
perspective for the visual representation. The last point leads back to the orga-
nization of the mental model (see Sec. 2). As we are using VRML to visualize
the scenes, we have to compute positions in a global coordinate system for every
object. The perspective is set afterwards and can be changed interactively. We
generate the depiction parallel to the graph, i.e. immediately update the depic-
tion for every new proposition. For every object, default sizes are given, and for
every relation, default positions are provided.

Classical constraint propagation algorithms like Waltz (1975) work for a finite
number of possible instantiations for each variable. The algorithm for Parcon, a
program for handling objects in GUIs described in Uhr et al. (1997), is a variant
for intervals over real numbers. The algorithm handles disjunctive constraints
by copying the constraint network and working in parallel on all copies. For our
domain, where we have lots of disjunctive constraints (i.e. nonoverlapping), this
would not be efficient, because the number of models to check grows exponen-
tially in the number of objects. Therefore we propose a simpler variant involving
backtracking. We can divide the variables occuring in the constraints into three
classes: 1) object sizes, 2) relative object rotations, and 3) distance parameters.
The order is meant to indicate the “variability” of the values: object sizes are
least likely to be changed, and distance values are most variable. In the im-

Inference and Visualization of Spatial Relations 221

A

C

D

B

E F

(a) Sizes

y

x

B

T
AC

D
E

(b) 5 objects placed

F overlaps A, B, and E
At default position,

x

B

T
AC

D
E

y

F

(c) Conflict for F

Default positions:
 on corresponding axis
 if possible at wall
 else touching object

(d) Defaults

Next tested position for E

x

B

T
AC

D
FE

y

move D to solve conflict

(e) Move object D

y

x

B

T
AC

D
FE

(f) Final situation

Fig. 5. Example problem with six objects

plemented algorithm outlined in Tab. 1, only distance values are manipulated.
Rotations are restricted to multiples of 90◦ and are fixed.

For every object, we know its size and coordinates, the constraints for its
position, and the objects the position depends on. We also keep a list posl of
possible positions. If an object is to be placed, we first try the default (= pre-
ferred) position. If there is a collision, we move the object front/left/back/right
by the amount necessary to avoid the collision and add those positions to posl.
For the actual position, we store the name(s) of the colliding object(s) and mark
the position as visited. For the colliding objects, too, we try wether by moving
them we find a new position to be tested. To avoid cycles, object positions are
stored. We consider positions equal if they differ by less than a given ε value.
This limits the number of possible positions and ensures termination while for
extreme examples we don’t find all possible solutions.

As an example for the algorithm, consider the following problem: there are
six objects A to F. Each object is right of T, i.e. must be placed in the grey area.

222 Sylvia Wiebrock et al.

Table 1. Overview of the placing algorithm

type Obj = {name, extensions, LINE list *bounds, Obj list *dep obs}
/* bounds: list of lines bordering the admissible area

dep obs: objects with parameters mentioned in bounds */
type Pos = {x, y, Obj list *coll} /* coll: objects colliding at position (x,y) */
type Scene = {Obj *obj, Pos *act pos, Pos *pref pos,

Obj list *coll, Pos list *posl } /* posl is initialized to pref pos */
/* colliding objects at act pos, and alternative positions posl */

type Config = {Scene list *placed, Scene list *add}
bool place obj (Scene list *placed, Scene *curr)
/* try to add new object without repositioning objects already placed */
{ repeat collision := false;

pos := first unvisited position in curr→posl;
forall obj in placed overlapping curr at pos do
{ move curr front/left/back/right to avoid conflict and add positions to curr→posl;
move obj front/left/back/right to avoid conflict and add positions to obj→posl;
/* positions are only added if they are not already on the list*/
add obj to curr→coll; collision := true; }

mark pos as visited;
until not collision or no more unvisited positions in curr→posl;
return collision; }

bool place list (Scene list *placed, Scene list *add)
/* try to place each object in add without repositioning objects already placed */
{ curr := first object in add;

repeat success := true;
if place obj (placed, curr)
{ move curr from add to placed;

if not place list (placed, add)
{ mark act pos in curr as visited; success := false
move curr from placed to add; } }

else success := false;
until success or no more unvisited positions in curr→posl;
return success; }

bool place all (Scene list *placed, Scene list *add, Config list *all)
/* try to place each object in add; if necessary objects are removed from placed list;

all tested configurations are stored to avoid loops */
{ conf = {placed, add};

repeat success := true;
if not place list(conf.placed, conf.add)
{ unplaced := first element of conf.add; success := false;

forall coll in unplaced→posl do
{ new conf := conf with all scenes for objects in coll moved from placed to add;
insert new conf into all such that all is sorted by expected effort; }
/* least number of remaining objects, shortest collision list */

conf := next element of all; }
until success or not conf; /* no more untested configurations */
if success { placed := conf.placed; add := conf.add; }
return success; }

Inference and Visualization of Spatial Relations 223

Additional constraints are: behind(A,B) (B is behind A) and left(A,C) (C is left
of A). Suppose that all objects have the same orientation as T. Object sizes are
shown in Fig. 5(a) and default positions in Fig. 5(d). When objects A to E are
placed, we have the situation shown in Fig. 5(b). Now trying to place F at the
default position gives the conflict shown in Fig. 5(c). To resolve the conflict,
object E is removed, because A and B are interdependent. F is positioned at E’s
place. Now we have to re-place E. The next position tried is to the left of its
former position, see Fig. 5(e). This gives a conflict with D. D is moved by the
width of E, and E is included, see Fig. 5(f). To compute the scene depicted here,
there were between 29 and 73 positions stored for the objects (314 for the six
objects together), and 174 constellations were tested.

4 Conclusions

In the text above, we have considered three different representations of a situa-
tion: the propositional description of the spatial constellation, the graph as the
structural representation constructed from it, and a visual representation of the
situation. Models of spatial representation based on the work of Kosslyn, e.g.
Schlieder and Behrendt (1998), postulate that beside the mental model a mental
image is constructed that can be used for inspection. Unlike the mental model,
this image is necessarily bound to a fixed perspective. This can make updating
the model harder when the texts induce a change of perspective. Some results
discussed in Hörnig, Eyferth, and Gärtner (2000) indicate that the visual repre-
sentation is only available as long as the perspective does not change. Possibly
the cognitive effort for updating both representations simultaneously would be
too high, otherwise.

For our AI model, the question of a global reference frame is relevant for
the updating and inference process where we have to decide which relations are
represented explicitly in the graph and available without inference. Several possi-
bilities are discussed in Hörnig et al. (1999), and Hörnig et al. (2000). Choosing
a perspective for the generated depiction is a related problem. Another one con-
cerns finding good heuristics for the instantiation of variables, especially with
respect to the plausibility of the resulting depiction. While there is some evidence
for the admissible regions and default positions for simple spatial relations, it is
still unclear how to generalize those results for complex scenes.

References

Ambler, A. P. and R. J. Popplestone (1975). Inferring the Positions of Bodies from
Specified Spatial Relationships. Artificial Intelligence 6, 157–174. 213

Claus, B., K. Eyferth, C. Gips, R. Hörnig, U. Schmid, S. Wiebrock, and F. Wysotzki
(1998). Reference Frames for Spatial Inferences in Text Comprehension. In
C. Freksa, C. Habel, and K. F. Wender (Eds.), Spatial Cognition - An Interdis-
ciplinary Approach to Representing and Processing Spatial Knowledge, Springer.
212

224 Sylvia Wiebrock et al.

Clementini, E., P. D. Felice, and D. Hernández (1997). Qualitative representation of
positional information. Artificial Intelligence 95, 317–356.

Hernández, D. (1994). Qualitative Representation of Spatial Knowledge. Springer. 214
Hörnig, R., B. Claus, and K. Eyferth (1999). In Search for an Overall Organizing

Principle in Spatial Mental Models: A Question of Inference. In S. O’Nuallain
and M. Hagerty (Eds.), Spatial Cognition; Foundations and Applications. John
Benjamins. Forthcoming.

Hörnig, R., K. Eyferth, and H. Gärtner (2000). Orienting and Reorienting in Egocentric
Mental Models. This volume.

Johnson-Laird, P. N. (1983). Mental Models: Towards a Cognitive Science of Language,
Inference and Consciousness. Cambridge: Cambridge University Press. 212, 214

Jörding, T. and I. Wachsmuth (1996). An Antropomorphic Agent for the Use of Spatial
Language. In Proceedings of ECAI’96-Workshop on Representation and Processing
of Spatial Expressions, S. 41–53. 212

Musto, A., K. Stein, A. Eisenkolb, T. Röfer, W. Brauer, and K. Schill (2000). From
Motion Observation to Qualitative Motion Representation. This volume.

Schlieder, C. and B. Behrendt (1998). Mental model construction in spatial reason-
ing: a comparison of two computational theories. In U. Schmid, J. Krems, and
F. Wysotzki (Eds.), Mind modelling: a cognitive science approach to reasoning,
learning, and discovery, Lengerich, S. 133–162. Pabst Science Publishers.

Schmid, U., S. Wiebrock, and F. Wysotzki (1999). Modelling Spatial Inferences in
Text Understanding. In S. O’Nuallain and M. Hagerty (Eds.), Spatial Cognition;
Foundations and Applications. John Benjamins. Forthcoming.

Schulmeister, B. and F. Wysotzki (1997). DIPOL – A Hybrid Piecewise Linear Classi-
fier. In G. Nakhaeizadeh and C. C. Taylor (Eds.), Machine Learning and Statistics
- The Interface, S. 133–152. Wiley. 218

Stolp, R., B. Weber, M. Müller, S. Wiebrock, and F. Wysotzki (1999). Zielgerichtete
Trainingsmethoden des Maschinellen Lernens am Beispiel von DIPOL. In P. Perner
(Ed.), Maschinelles Lernen, FGML’99. IBaI Report.

Uhr, H., P. Griebel, M. Pöpping, and G. Szwillus (1997). Parcon: ein schneller Solver
für grafische Constraints. KI 97 (1), 40–45.

Waltz, D. (1975). Understanding Line Drawings of Scenes with Shadows. In P. H. Win-
ston (Ed.), Psychology of Computer Vision. New York: McGraw-Hill.

Wiebrock, S. and F. Wysotzki (1999). Lernen von räumlichen Relationen mit CAL5
und DIPOL. Fachberichte des Fachbereichs Informatik No. 99-17, TU Berlin.

	Inference and Visualization of Spatial Relations
	Introduction
	Inference
	Example for the Inference of Spatial Relations
	Machine Learning

	Generating Depictions
	Conclusions

