
Interactive Layout Generation with a Diagrammatic

Constraint Language1

Christoph Schlieder* and Cornelius Hagen**

*University of Osnabrück, Institute for Semantic Information Processing
cschlied@cl-ki.uni-osnabrueck.de

**University of Freiburg, Center for Cognitive Science
hagen@cognition.iig.uni-freiburg.de

Abstract. The paper analyzes a diagrammatic reasoning problem that consists
in finding a graphical layout which simultaneously satisfies a set of cons-
traints expressed in a formal language and a set of unformalized mental cons-
traints, e.g. esthetic preferences. For this type of problem, the performance of
a layout assistance system does not only depend on its use of computational
resources (algorithmic complexity) but also on the mental effort required to
understand the system’s output and to plan the next interaction (cognitive
complexity). We give a formal analysis of the instantiation space of a weakly
constrained rectangle layout task and propose a measure for the cognitive
complexity. It is discussed how the user’s control of the presentation order of
the different constraint instantiations affects the cognitive complexity.

1 Partially Unformalized Constraint Systems

One of the fields in which constraint-based approaches to spatial configuration have
been particularly successful is the generation of document layouts. Assistance systems
as the ones described by [17] and [7] allow the user to specify layout properties with a
relational constraint language. The system then generates the layout by means of a
constraint solver. However, not all layout problems permit this neat form of declarativ-
ity which completely hides the search aspect of constraint satisfaction from the user.
Often, the user has to interact with the system in order to guide the search process. One
rather trivial reason for combining machine reasoning with mental reasoning is given
when the search heuristics produce suboptimal results. A human observer who visually
inspects a machine-generated layout can sometimes provide precious hints about how
to improve the quality of the solution. Of course, this type of mental postprocessing
constitutes only a last resort. Therefore, in applications such as yellow page layout
where design rules are easily formalized, much research effort is spent on eliminating
the need for mental postprocessing.

A completely different situation arises in creative layout tasks. These tasks are gov-

1. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the priority
program on spatial cognition (grant Str 301/5-2).

Ch. Freksa et al. (Eds.): Spatial Cognition II, LNAI 1849, pp. 198-211, 2000.
 c Springer-Verlag Berlin Heidelberg 2000

erned by constraints that, at least until now, have resisted complete formalization. Typ-
ically, the layouter is able to specify some of the constraints that a solution must sat-
isfy, but these constraints do only partially capture his notion of a “good” solution.
Design principles which blend functional considerations with esthetic preferences are
known to be very difficult to verbalize, let alone to formalize in a constraint language
[3]. However, the mental processing of the unformalized design principles is generally
very efficient: a human layouter recognizes without difficulty a solution satisfying
such constraints; usually he is also able to rate the quality of the solution.

This type of layout task can be characterized as partially unformalized constraint
problem (PUCP): Find a layout that satisfies simultaneously (1) a set F of spatial con-
straints specified in a constraint language L, and (2) a set U of mental constraints
which cannot be expressed in L. The assistance system then helps the user to explore
the solution space of the PUCP. Its main function consists in computing instantiations
for the constraints in F and in providing suitable navigation operations for moving
between instantiations. The user navigates through the instantiation space checking the
constraints in U until a satisfying layout is found. In other words, the system acts as a
medium which guarantees that during the navigation the user will not take layouts into
consideration which violate any of the formalized constraints (Fig. 1).

Fig. 1 Partially unformalized constraint problem

Because of the essential role that mental reasoning plays in solving a PUCP, a perfor-
mance analysis of the assistance system cannot ignore the time that the user spends on
evaluating a layout and planning the next interaction as it could be done in a mental
postprocessing scenario. To mark this difference, we speak of interaction based on
mental coprocessing.

Mental coprocessing is a special type of interactive constraint processing. It differs
from other interaction schemes studied in the area of spatial constraint solvers in two
ways:

(1) The user cannot provide the system with an instantiation. Mental and formal
constraints combine to form a problem that is too complex to be solved mentally. This
is in clear difference to the scenario described by Kurlander and Feiner [11] where
constraints are inferred from example solutions specified by the user.

(2) The formal constraint system is weakly constrained. In other words, many
instantiations exist and the problem consists in finding a way to present the large space

unformalized constraints formalized constraints

mental model based finite domain

mental reasoning machine reasoning

configuration strategy constraint solver

199Interactive Layout Generation with a Diagrammatic Constraint Language

of alternative solutions to the user. Interactive constraint solvers typically rely on the
assumption that the task is strongly constrained and a unique or no instantiation exits.
A classical example is Borning’s constraint solver ThingLab [2].

As a consequence, the problem for mental coprocessing consists in finding a good
way to present a large instantiation space to the user. This problem has been addressed
first not in spatial, but in temporal reasoning. Hoebel, Lorenzen, and Martin [8] visual-
izes the solutions found by their temporal planner, i.e. alternative plans satisfying a set
of (formal) temporal constraints. Their approach amounts to simultaneously present all
instantiations. Clearly, this is feasible only for very small spaces (< 100 instantiations).

The purpose of this paper is to study the case where a simultaneous presentation of
all solutions is not feasible because of the size of the instantiation space. Our analysis
refers to a concrete layout problem (section 2) which is based on a simple diagram-
matic constraint language that is described in section 3. We argue that the cognitive
complexity of a PUCP critically depends on the degree to which the user is allowed to
control the order in which constraint instantiations are produced (section 4). A crite-
rion for an optimal degree of cognitive control is formulated (section 5) and applied to
the layout problem (section 6).

2 Constrained-Based Document Layout

Constraint languages for document layout allow to express relations between rectangu-
lar graphical objects such as textboxes and images. Fig. 2 shows some of the relational
constraints used in the seminal work of Weitzman and Wittenburg [17]. These spatial
relations describe the ordering of the boxes (e.g. left-of) or their alignment (e.g. top-
aligned) without specifying metrical information. We consider a constraint language
that encompasses all possible relations of this kind. The basic idea consists in project-
ing the configuration of rectangles onto the horizontal and the vertical axis thereby
obtaining two configurations of intervals.

Fig. 2 Constraints for a document layout

Constraints between intervals are then expressed by means of a system of relations

2: image

3: text

4: text

1: logo

5: text

(left-of 1 2)

(top-aligned 1 2)

(left-aligned 3 4)

(left-aligned 4 5)

(spaced-below 3 4)

(spaced-below 4 5)

200 Christoph Schlieder and Cornelius Hagen

that is widely used in AI research on temporal and spatial reasoning: the interval rela-
tions introduced by Allen [1]. The system I = {<, m, o, s, d, f, =, fi, di, si, oi, mi, >}
consists of the 13 relations between two intervals and that
can be distinguished in terms of the ordering of , , , and . Disjunctive infor-
mation is represented by sets of interval relations. X {o,s,d} Y, for instance, is a shorter
notation for . Every element of INT = can thus be inter-
preted as a generalized interval relation, i.e. a disjunction of interval relations. Inver-
sion and composition are defined componentwise for relations from INT. Some rela-
tions deserve special attention: the universal relation 1 corresponding to I and the
contradictory relation 0 corresponding to the empty set. The 13 interval relations are
represented by singleton subsets that are called the basic relations of INT.

We use generalized interval relations for stating constraints between intervals. An
interval constraint system for a set of intervals { ,..., } is an matrix

 with entries . The entry specifies the generalized interval rela-
tion that must hold between interval and . If the entry is 1 it does not constrain
the position of the intervals — any relation could hold. In standard terminology, the
constitute the constraint variables that are instantiated with values from the domain I.
An assignment of values to the constraint variables of is given by a matrix

, whose entries are interval relations satisfying . We call B a
consistent assignment or instantiation of C iff . In other
words, consistency means that the assignment is compatible with the composition
table. Since the constraint variables range over a finite domain, namely the 13 interval
relations, the satisfiability problem is decidable. Although for general interval con-
straint systems deciding satisfiability is known to be NP-complete, the problem
becomes polynomial as soon as the relations of the constraint system are restricted to
certain subsets of INT [13]. In these cases a simple constraint propagation
algorithm (path consistency) can be used to decide satisfiability, or — more interesting
— to compute a constraint instantiation. In the general case the propagation algorithm
is used as forward checking heuristic during backtracking [12].

3 A Simple Diagrammatic Constraint Language

As was already mentioned, constraints between two rectangles A and B are represented
by constraints between the two pairs of intervals that result from projecting A and B
onto the horizontal and vertical axis: , and , respectively. Formally, the
rectangle relation with holds iff and (cf. Fig. 3).
The system of rectangle relations consists of relations R = {<:<, <:m,
<:o, ..., oi:>, mi:>, >:>}. In order to express disjunctive information, rectangle relations
are generalized analogously to the interval relations. However, to guarantee tractabil-
ity, we do not consider arbitrary relations from but only those that can be written as
a product of generalized interval relations2. The product of is :=

. In this sense {f:d, f:o, m:d, m:o} is a gen-
eralized rectangle relation whereas {f:d, f:o, m:o} is not. We denote the set of these

X x1 x2,[]= Y y1 y2,[]=
x1 x2 y1 y2

X o Y X s Y X d Y∨ ∨ 2
I

X1 Xn n n×
C rij()= rij INT∈ rij

Xi Xj
rij

C rij()=
B bij()= bij I∈ bij rij∈

i j k∀∀∀ bik bij bjk•()∈

O n
3()

Ax Bx Ay By
A rx:ry B rx ry, I∈ Ax r xBx Ay r yBy

13 13× 169=

2
R

r1 r2, INT∈ r1 r2×
b1:b2 b1 r1 b2 r2∈∧∈{ } f,m{ } d,o{ }×=

201Interactive Layout Generation with a Diagrammatic Constraint Language

relations by REC. Because generalization is restricted, relations from REC can be writ-
ten in product form, e.g. A {f,m}:{d,o} B for A {f:d, f:o, m:d, m:o} B (cf. Fig. 3).

The composition of generalized rectangle relations reduces to the composition of
generalized interval relations. For relations and from REC

. Now that composition is defined, con-
straint systems can be introduced in complete analogy to interval constraint systems: A
rectangle constraint system for a set of rectangles { ,..., } is an matrix

 with entries . An assignment of values to the constraint variables
of is given by a matrix whose entries are rectangle relations

 satisfying . The assignment B is an instantiation of C iff
. Note that because all relations are from REC, a rectangle

constraint system can be solved by solving two independent interval relation systems.

Fig. 3 Projection of layout boxes

Rectangle constraint systems differ from the finite domain constraint systems tradi-
tionally used for visual interaction. Constraint variables represent qualitative relations,
not coordinates from a finite range of integers such as in [2] or symbolic constraints as
in [7]. The type of qualitative abstraction underlying rectangle constraint systems can
be described formally in the framework of relational algebras3 [12]. Constraint-based
reasoning in relational algebras has been studied thoroughly by AI research on qualita-
tive spatial reasoning [4]. Most of the following analysis generalizes to reasoning with
arbitrary spatial relational algebras.

4 Navigation in Instantiation Space

We consider a PUCP for which the set F of formal constraints is given by a rectangle
constraint system. Only the user can check whether an instantiation of F also satisfies

2. Actually, more is needed for tractability. In each projection, the generalized interval relations
must be members of a tractable subalgebra of (see [13]).

3. The technical difference between symbolic constraints such as those used in [7] and qualita-
tive constraints is that the latter express information about relational composition and use
path-consistency (not the weaker arc-consistency) as propagation method.

2R

r11:r12 r21:r22
r11:r12() r21:r22()• r11 r12•()= : r21 r22•()

X1 Xn n n×
C rij()= rij REC∈

C rij()= B bij()=
bij R∈ bij rij∈

i j k∀∀∀ bik bij bjk•()∈

A

Ay d By

Ax f Bx

B

A

B

A

B

A

B

A

B

A f:d B

A f:d B A m:d B

A m:o BA f:o B

202 Christoph Schlieder and Cornelius Hagen

the additional set U of unformalized constraints. If ℑ denotes the set of instantiations
of F, then the mental operation of checking the constraints in U realizes a mapping

 where if the instantiation satisfies U, and
 otherwise. In the following we regard this mental process as computa-

tionally intransparent. Although the details of the interaction between mental and
machine reasoning can be designed very differently, all assistance systems for PUCP
share the same basic interaction cycle. It consists of a loop which combines mental
operations (step 1) and computations performed by the system (step 2):

repeat
(1) Select a navigation operation .
(2) Find an alternative instantiation of F.

until is true

Searching through the instantiations of F is realized by iterative execution of step 2.
The user can influence search order through the choice of a navigation operation. In
the document layout scenario, he could for example point at a layout box that the sys-
tem should reposition, or, more specifically, drag the layout box to the place he prefers.
In both cases, one option out of a set of possible options is selected. However,
the user has more control over the search process in the latter than in the former case.
Quantitatively, this difference is reflected by a bigger cardinality of : the number of
layout boxes is multiplied by the number of positions in the layout grid. How much
search control should the user be given? Obviously, more control is an advantage as
long as it does not increase the cognitive complexity of the task. If the user executes c
basic interaction cycles spending an average time on selecting the navigation oper-
ation then the cognitive complexity, i.e. the total time spent on mental reasoning, is
given by

This means that there is a trade-off between spending time on evaluating different lay-
outs generated by the system (c interaction cycles) and spending time on a single lay-
out deciding how to modify it (navigation time). As a tool for describing the trade-
off we introduce the navigation graph. The graph encodes what instantiation is
generated when the navigation operation is selected. Generally, this depends
on the instantiation to which the navigation operation is applied. In other words,
each realizes a mapping . The navigation graph is
specified by and . Note that naviga-
tion graphs can become very large: ℑ can grow exponentially with n, the number of
layout objects. Just think of the interval constraint system with entries

 for and . Its navigation graph has vertices. The num-
ber of edges of a navigation graph can vary considerably. Fig. 4 illustrates this with
three regular graphs for : the cycle , the hypercube , and the com-
plete graph .

 and describe the two extremes where the user exerts no or complete search
control respectively. In the first case, the assistance system generates instantiations in a

m: ℑ true false,{ }→ m I() true= I ℑ∈
m I() false=

ω Ω∈
Iω

m Iω()

ω Ω

Ω

Tω

Tmental c Tω⋅=

Tω
Iω ℑ∈

ω Ω∈
J ℑ∈

ω Ω∈ ω: ℑ ℑ→ N V E,()=
V ℑ= E I J,() ℑ ℑ I×∈ ω J() ω Ω∈,={ }=

C rij()=
rij < >,{ }= i j≠ rii ={ }= n!

ℑ 2
n

= C2n H2n

K2n

C2n K2n

203Interactive Layout Generation with a Diagrammatic Constraint Language

fixed order. As the user is forced to follow the tour , he spends constant time for
the navigation decisions but it may take him as many as interaction cycles to
reach his goal (diameter of).

Fig. 4 Different types of navigation graphs

With the user has complete search control. Any instantiation can be reached in a
single interaction cycle. However, he must spend considerable time to decide which of
the O(2n) navigation alternatives (degree of) to choose. A compromise between
the two extremes is realized by which implements partial search control. There
are O(n) different navigation operations between which the user has to decide and with
O(n) interactions he reaches any instantiation.

Fig. 5 Navigation graph and search control

5 Lessons from Mental Model Theory

The optimal balance between diameter and degree of the navigation graph should min-
imize the cognitive complexity of the whole task . Clearly, the opti-
mum depends on how relates to the degree, or equivalently, to the cardinality of

. Our argument is based on (1) the formal analysis of the problem space given in the
previous section, (2) empirical evidence about the use of mental models in spatial rea-
soning. We briefly summarize the relevant findings.

Reasoning with spatial constraints has been studied for more than 20 years in the
spatial-relational inference paradigm (see [5]). Tasks in this paradigm consist of the
non-universal entries of a constraint matrix which are presented in verbal form to sub-

navigation
graph

diameter degree search
control

C2n O(2n) O(1) none

H2n O(n) O(n) partial

K2n O(1) O(2n) complete

C2n

O 2
n()

C2n

C2n H2n K2n

K2n

K2n

H2n

Tmental c Tω⋅=
Tω

Ω

204 Christoph Schlieder and Cornelius Hagen

jects of the experiment. In our case: “The red interval touches the green interval from
the left” for . Subjects are then asked to specify instantiations for certain or all
constraint variables (“Which relation must/could hold between the blue and the yellow
interval?”). It was found that most human reasoners adopt a model-theoretic rather
than proof-theoretic strategy for solving spatial relational inference tasks. They try to
build alternative spatial layouts in visuo-spatial working memory and check which
relations hold in the layouts rather then proving with inference rules that certain rela-
tions must/could hold. This finding led Johnson-Laird to formulate mental model the-
ory, an explanatory framework unifying results about model-based reasoning strategies
[9]. Results from the experiments conducted by Rauh and Schlieder [14] clearly indi-
cate that interval constraint systems are mentally solved by reasoning with mental
models. Human reasoners seem not to be able to effectively use constraint propagation
— a mental proof strategy. Instead, they immediately try to find an instantiation by
means of simple spatial layout strategies. The layout strategies for constructing inter-
val configurations have been analyzed and described in [15]. It turns out that they are
very efficient but incomplete, i.e. the strategies do not always produce an interval con-
figuration. If the mental layout strategies succeed, they produce a first mental model,
the preferred mental model, which constitutes the starting point for the further reason-
ing process. Interestingly, subjects agree considerably on which instantiation of an
interval constraint system they prefer [10]. Fig. 6 shows all instantiations of the inter-
val constraint system that consists of three non-universal constraints A di B, B > C, and
C m D. According to the data of an experiment from [14], interval configuration 37
constitutes the mental model preferred by most subjects. Only few subjects preferred
the somewhat similar configuration 36. None of the other configurations acted as pre-
ferred mental model.

Human reasoners seem not to possess different sets of layout strategies for con-
structing different instantiations of an interval constraint system. They obtain alterna-
tive instantiations by transforming the preferred mental model. As a consequence, cog-
nitive complexity increases linearly with the number of mental models constructed, or
equivalently, with the number of transformations applied. If the task is solved by men-
tal reasoning without the possibility to externalize working memory contents then only
few of the possible instantiations are found. This is where assistance systems enter.
They provide operations for navigating through instantiation space that support the
process of mental model transformation. The system checks which transformations
produce an instantiation and gives the user a complete overview of all applicable trans-
formations. In order to decide which navigation operation to take next, the user must
anticipate the result of this operation and evaluate whether it brings him closer to a lay-
out that satisfies the unformalized constraints. Generally, he can only partially antici-
pate the result. Based on a mental model of part of the layout, it is often impossible to
see that a local transformation of the layout has global consequences.

Moving a single layout box to a new position can lead to the repositioning of all
other layout boxes. Because the transformation of mental models is the basic reasoning
strategy at the user’s disposition for anticipating the effects of his navigation operation
and because the cognitive complexity of mental model transformation increases lin-
early with the number of models that are constructed, we expect to find Tω = O(|Ω|).

X m Y

205Interactive Layout Generation with a Diagrammatic Constraint Language

Fig. 6 Instantiation space for the interval constraint system
A di B, B > C, C m D

 1: di o d

 2: di fi d

 3: di di d

 4: di di f

 5: di di oi

 6: di di mi

 7: di di >

 8: si o d

9: si fi d

10: si di d

11: si di f

12: si di oi

13: si di mi

A r C A r D B r D

15: oi o d

16: oi fi d

17: oi di d

18: oi di f

19: oi di oi

20: oi di mi

21: oi di >

22: mi s d

23: mi = d

24: mi si d

25: mi si f

26: mi si oi

27: mi si mi

28: mi si >

29: > d d

30: > f d

31: > oi d

32: > oi f

33: > oi oi

34: > oi mi

35: > oi >

36: > mi >

37: > > >

encoding scheme

A
B
C
D

14: si di >

interval relations
preferred
mental model

presentation
sequence

206 Christoph Schlieder and Cornelius Hagen

6 Neighborhood Navigation Operations

As we have argued in the last section, . In order to obtain a navigation
graph that minimizes the cognitive complexity, we will have to choose in such a
way that where n denotes the number of layout objects (rectangles, inter-
vals). Additionally, the navigation operations should correspond to transformations of
mental models that can be computed with little cognitive effort. On the level of single
interval relations, cognitively simple transformations are known to exist. They imple-
ment the conceptual neighborhood of interval relations [6]. Interval relations and

 are said to be conceptual neighbors if a configuration of two intervals X and Y satis-
fying can be continuously transformed into a configuration of intervals and

 satisfying such that during the transformation no configuration arises in
which a relations different from and holds. For example, there is no continuous
transformation of into which avoids a stage where : the relations
< and m as well as m and o are conceptual neighbors whereas < and o are not. The
edges of the graph in Fig. 7 specify conceptual neighborhood for the interval relations

Fig. 7 Conceptual neighborhood graph

We generalize this idea to configurations of more than two intervals. Distance in the
neighborhood graph of Fig. 7 is denoted by , e.g. . For two
instantiations and of an interval constraint system the concep-
tual distance matrix is defined as

.

The most strict notion of instantiation neighborhood considers instantiations A and B
neighbors iff in the conceptual distance matrix only two entries, and ,
corresponding to the relation between interval and are 1 whereas all other
entries vanish. In the instantiation space of Fig. 5 configuration 4 and 11 are concep-
tual neighbors; 4 and 18 are not. Transformations that map an instantiation into a
neighboring one seem good candidates for navigation operations that are cognitively
simple to compute. It is not difficult to show that the maximum number of transforma-
tions into conceptually neighbored configurations is bounded by . This
means that the number of neighbors of an instantiation is small enough to allow a men-
tal evaluation of all navigation alternatives. Neighborhood navigation relies on a set of
navigation operations that move only from an instantiation to its conceptual neighbors.

Tω O Ω()=
Ω

Ω O n()=

r1
r2

X r1 Y X′
Y′ X′ r2 Y′

r1 r2
X < Y X o Y X m Y

mi >oi=om<

s d f

sidifi

d r1 r2,() d m si,() 4=
A aij()= B bij()=

∆ A B,() d aij bij,()()=

∆ A B,() rij rji
Xi Xj

8 n⋅ O n()=

207Interactive Layout Generation with a Diagrammatic Constraint Language

Actually, a slightly more general notion of instantiation neighborhood was used to
compute the navigation graph in Fig. 6. With our definition, the edge between instanti-
ation 15 and 22 does not correspond to a neighborhood transformation since relations
between more than two intervals change at once. However, the notion of neighborhood
transformations can be generalized to capture such cases. Neighborhood navigation
implements a local navigation scheme. It is not only local with respect to the instantia-
tion space but also local with respect to the geometry of each single instantiation.
Neighborhood transformations only change relations between objects that are close to
each other.

In order to change relations between layout objects that are far apart, a sequence of
transformations is needed. For this purpose, presentation sequences where all neigh-
borhood transformation refer to the same interval are especially useful. Fig. 5. shows
an example consisting of a sequence involving the instantiations 1, 2, ..., 7. The algo-
rithmic problem of generating presentation sequences consists in modifying a path-
consistency constraint solver for relational algebras such that it generates instantiations
in a particular ordering. To achieve this goal the constraint variables must be assigned
values in a particular order. A best first strategy can be used for this purpose: (1) assign
variables that denote relations which involve the selected interval first, (2) assign val-
ues that denote relations which are conceptual neighbors of the last assignment first.

Because of their local nature, neighborhood navigation operations are easily visual-
ized. Fig. 8 illustrates the structure of the visual interface of a system assisting the user
to solve a PUCP in the document layout scenario. The formalized constraints are sym-
bolized by flag icons which stand for rectangle relations: b1 {<}:{f} b2,
b3 {s}:{>} b4, b4 {s}:{>} b5. To navigate through the instantiation space, the user
selects a layout box. The system then computes the applicable neighborhood transfor-
mations and visualizes them using arrow icons. By selecting one of the arrow icons,
the user communicates his navigation decision to the system which alters the layout
respecting the formalized constraints. A prototype assistance system based on neigh-
borhood navigation has been implemented. It serves as a testbed for evaluating the dif-
ferent sets of navigation operations that result from using definitions for instantiation
neighborhood of different strength. Which notion of neighborhood minimizes cogni-
tive complexity is an empirical question. However, the analysis of the cognitive com-
plexity of partially unformalized constraint systems presented in this paper provides
the conceptual framework for studying the issue.

7 Conclusion

The analysis of the cognitive complexity of navigation in instantiation space implies
that the user should be given a number of navigation choices that does not increase
more than linearly with the number of layout boxes. One way to implement this princi-
ple is to allow the user to select a box and to let the system generate an appropriate pre-
sentation sequence. This raises the issue of efficiently controlling the order in which a
path-consistency constraint solver computes instantiations. In our prototype system,

208 Christoph Schlieder and Cornelius Hagen

this is done by using a best-first strategy for ordering variable-value assignments.
Future work will move beyond single presentation sequences and try to formulate heu-
ristics which allow to decompose a connected component of the instantiation space
into sequences of presentation sequences.

Fig. 8 Visualization of navigation operations

We conclude with a discussion of the limitations of local navigation and a brief sketch
of how to overcome them. The most obvious limitation is due to the fact that, in gen-
eral, the instantiation space consists of several connected components, not just one as
in our example. Local navigation allows to navigate within a component, but since it
moves only to conceptually neighboring instantiations, it will never reach any other
component. A second limitation of local navigation consists in its relative slowness.
With a single interaction step, the user can move only at unit distance from the present
position in the navigation graph. It seems natural to provide the layout assistance sys-
tem in addition to local navigation operations with operations for global navigation.
Such operations should permit the user to move with a single interaction step distances

 including the case which corresponds to a movement between con-
nected components.

As we have seen, local navigation can be realized on the interface level by simply
selecting a layout box. Many interactive constraint systems provide for a more com-
plex type of graphical interaction such as the dragging and dropping of a layout box
(e.g. [2], [7], [11]). Although these systems are designed for iteratively finding a solu-
tion for a strongly constrained layout task, global interactions (drag and drop) are use-
ful also in the context of weakly constrained tasks. Selection of a layout box imple-
ments navigation within instantiation space while dragging can temporally cause
navigation to leave instantiation space and to enter configuration space, i.e. the uncon-
strained configurations of layout boxes. Configuration space navigation raises a com-
putational problem that was not present in instantiation space navigation. When the
user produces a configuration that violates some layout constraints, then the layout
assistance system must generate the instantiation that lies closest to the configuration
under a suitable similarity metric on the configuration space.

2

4

5

box 2box 1
box 3

box 4

box 5

d 1> d ∞=

209Interactive Layout Generation with a Diagrammatic Constraint Language

Since the system’s behavior becomes more complex, we expect that it is more diffi-
cult for the user to mentally anticipate the effects of his actions in configuration space
navigation than in instantiation space navigation. More precisely, configuration space
navigation requires the user to make a kind of analogical inference. The user knows the
effect of a navigation operation n (dragging a particular box to a particular position) on
a specific instantiation : it causes the system to produce instantiation . Currently,
the system is displaying instantiation and the user has to infer what instantiation
the system produces when n is applied. In other words, the user has to solve an analogy
of the type : = : . We plan to study this type of analogical inference in its con-
nection of global navigation strategies in the near future.

References

1. J. Allen, Maintaining knowledge about temporal intervals, Communications of the ACM, 26,
pp. 832-843, 1983.

2. A. Borning, Graphically defining new building blocks in ThingLab, In: E. Glinert (ed.) Visual
programming environments: paradigms and systems, IEEE Computer Societey Press: Los
Alamitos, CA, 450-469, 1990.

3. R. Coyne, M. Rosenman, A. Radford, M. Balachandran and J. Gero, Knowledge-based design
systems, Addison-Wesley, Reading MA, 1990.

4. A. G. Cohn, Qualitative spatial representation and reasoning techniques. In: Proceedings KI-
97: Advances in Artificial Intellligence, Springer, Berlin, pp. 1-30, 1997.

5. J. Evans, S. Newstead and R. Byrne, Human reasoning: The psychology of deduction, La-
wrence Erlbaum, Hillsdale, NJ, 1993.

6. C. Freksa, Temporal reasoning based on semi-intervals, Artificial Intelligence, 54, pp. 199-
227, 1992.

7. W. Graf, A. Kroender, S. Neurohr and R. Goebel, Experience in integrating AI and constraint
programming methods for automated yellow pages layout, Künstliche Intelligenz, 2, 79-85,
1998.

8. L. Hoebel, W. Lorenzen and K. Martin, Integrating graphics and abstract data to visualize
temporal constraints, SIGART Bulletin, 9, 18-23, 1998.

9. P. Johnson-Laird and R. Byrne, Deduction. Lawrence Erlbaum, Hillsdale, NJ, 1991.
10. M. Knauff, R. Rauh and C. Schlieder, Preferred mental models in qualitative spatial reason-

ing: A cognitive assessment of Allen´s calculus. In Proceedings Conference of the Cogntive
Science Society, Lawrence Erlbaum, Mahwah, NJ, pp. 200-205, 1995.

11. D. Kurlander and S. Feiner, Inferring constraints from multiple snapshots, ACM Transactions
on Graphics, 12, 277-304, 1993.

12. P. Ladkin and A. Reinefeld, Fast algebraic methods for interval constraint problems. Annals
of Mathematics and Artificial Intelligence, 19, 1997.

13. B. Nebel and H. Bürckert, Reasoning about temporal relations: A maximal tractable subclass
of Allen´s interval algebra. Journal of the ACM, 42, pp. 43-66, 1995.

14. R. Rauh and C. Schlieder, Symmetries of model construction in spatial relational inference,
In Proceedings Conference of the Cogntive Science Society, Lawrence Erlbaum, Mahwah,
NJ, pp. 638-643, 1997.

i1 i2
i3 i4

i1 i2 i3 i4

210 Christoph Schlieder and Cornelius Hagen

15. C. Schlieder and B. Berendt, Mental model construction in spatial reasoning: A comparison
of two computational theories. In U. Schmid, J. Krems and F. Wysotzki (Eds.). Mind model-
ling: A cognitive science approach to reasoning, learning and discovery. Pabst Science Pu-
blishers, Berlin, 1998.

16. C. Schlieder, Diagrammatic transformation processes on two-dimensional relational maps,
Journal of Visual Languages and Computing, 9, pp. 45-59, 1998.

17. L. Weitzman and K. Wittenburg, Grammar-based articulation for multimedia document de-
sign, Multimedia Systems Journal, 4, pp. 99-111, 1996.

211Interactive Layout Generation with a Diagrammatic Constraint Language

	Partially Unformalized Constraint Systems
	Constrained-Based Document Layout
	A Simple Diagrammatic Constraint Language
	Navigation in Instantiation Space
	Lessons from Mental Model Theory
	Neighborhood Navigation Operations
	Conclusion
	References

